vllm/vllm/executor/multiproc_gpu_executor.py

259 lines
10 KiB
Python
Raw Normal View History

import asyncio
import os
import signal
import threading
import weakref
from functools import partial
from typing import Any, List, Optional
import torch
from vllm.executor.distributed_gpu_executor import ( # yapf: disable
DistributedGPUExecutor, DistributedGPUExecutorAsync)
from vllm.executor.gpu_executor import create_worker
from vllm.executor.multiproc_worker_utils import (ProcessWorkerWrapper,
ResultHandler, WorkerMonitor)
from vllm.logger import init_logger
from vllm.sequence import ExecuteModelRequest, SamplerOutput
from vllm.triton_utils import maybe_set_triton_cache_manager
from vllm.utils import (_run_task_with_lock, cuda_device_count_stateless,
get_distributed_init_method, get_open_port,
get_vllm_instance_id, make_async,
update_environment_variables)
logger = init_logger(__name__)
class MultiprocessingGPUExecutor(DistributedGPUExecutor):
"""Python multiprocessing-based multi-GPU executor"""
uses_ray: bool = False
def _init_executor(self) -> None:
# Create the parallel GPU workers.
world_size = self.parallel_config.world_size
tensor_parallel_size = self.parallel_config.tensor_parallel_size
# Set CUDA_VISIBLE_DEVICES for the driver, inherited by workers
if "CUDA_VISIBLE_DEVICES" not in os.environ:
update_environment_variables({
"CUDA_VISIBLE_DEVICES": (",".join(map(str, range(world_size))))
})
# Ensure that VLLM_INSTANCE_ID is set, to be inherited by workers
os.environ["VLLM_INSTANCE_ID"] = get_vllm_instance_id()
# Disable torch async compiling which won't work with daemonic processes
os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
# Configure thread parallelism if OMP_NUM_THREADS isn't set
#
# Helps to avoid CPU contention. The default of spawning a thread per
# core combined with multiprocessing for each GPU can have a negative
# impact on performance. The contention is amplified when running in a
# container where CPU limits can cause throttling.
default_omp_num_threads = 1
if "OMP_NUM_THREADS" not in os.environ and (
current_parallelism :=
torch.get_num_threads()) > default_omp_num_threads:
logger.warning(
"Reducing Torch parallelism from %d threads to %d to avoid "
"unnecessary CPU contention. Set OMP_NUM_THREADS in the "
"external environment to tune this value as needed.",
current_parallelism, default_omp_num_threads)
os.environ["OMP_NUM_THREADS"] = str(default_omp_num_threads)
torch.set_num_threads(default_omp_num_threads)
# workaround for https://github.com/vllm-project/vllm/issues/6103
if world_size > 1:
maybe_set_triton_cache_manager()
cuda_device_count = cuda_device_count_stateless()
# Use confusing message for more common TP-only case.
assert tensor_parallel_size <= cuda_device_count, (
f"please set tensor_parallel_size ({tensor_parallel_size}) "
f"to less than max local gpu count ({cuda_device_count})")
assert world_size <= cuda_device_count, (
f"please ensure that world_size ({world_size}) "
f"is less than than max local gpu count ({cuda_device_count})")
# Multiprocessing-based executor does not support multi-node setting.
# Since it only works for single node, we can use the loopback address
# 127.0.0.1 for communication.
distributed_init_method = get_distributed_init_method(
"127.0.0.1", get_open_port())
self.workers: List[ProcessWorkerWrapper] = []
# This is the list of workers that are rank 0 of each TP group EXCEPT
# global rank 0. These are the workers that will broadcast to the
# rest of the workers.
self.tp_driver_workers: List[ProcessWorkerWrapper] = []
# This is the list of workers that are not drivers and not the first
# worker in a TP group. These are the workers that will be
# broadcasted to.
self.non_driver_workers: List[ProcessWorkerWrapper] = []
if world_size == 1:
self.worker_monitor = None
else:
result_handler = ResultHandler()
for rank in range(1, world_size):
worker = ProcessWorkerWrapper(
result_handler,
partial(
create_worker,
**self._get_create_worker_kwargs(
rank=rank,
local_rank=rank,
distributed_init_method=distributed_init_method,
)))
self.workers.append(worker)
if rank % tensor_parallel_size == 0:
self.tp_driver_workers.append(worker)
else:
self.non_driver_workers.append(worker)
self.worker_monitor = WorkerMonitor(self.workers, result_handler)
result_handler.start()
self.worker_monitor.start()
# Set up signal handlers to shutdown the executor cleanly
# sometimes gc does not work well
# Use weakref to avoid holding a reference to self
ref = weakref.ref(self)
def shutdown(signum, frame):
if executor := ref():
executor.shutdown()
if threading.current_thread() is threading.main_thread():
signal.signal(signal.SIGINT, shutdown)
signal.signal(signal.SIGTERM, shutdown)
self.driver_worker = self._create_worker(
distributed_init_method=distributed_init_method)
self._run_workers("init_device")
self._run_workers("load_model",
max_concurrent_workers=self.parallel_config.
max_parallel_loading_workers)
def shutdown(self):
if (worker_monitor := getattr(self, "worker_monitor",
None)) is not None:
worker_monitor.close()
def _driver_execute_model(
self, execute_model_req: Optional[ExecuteModelRequest]
) -> Optional[List[SamplerOutput]]:
"""Run execute_model in the driver worker.
Passing None will cause the driver to stop the model execution
loop running in each of the remote workers.
"""
return self.driver_worker.execute_model(execute_model_req)
def _run_workers(
self,
method: str,
*args,
async_run_tensor_parallel_workers_only: bool = False,
max_concurrent_workers: Optional[int] = None,
**kwargs,
) -> Any:
"""Runs the given method on all workers.
Args:
async_run_tensor_parallel_workers_only: If True the method will be
run only in the remote TP workers, not the driver worker.
It will also be run asynchronously and return a list of futures
rather than blocking on the results.
"""
if max_concurrent_workers:
raise NotImplementedError(
"max_concurrent_workers is not supported yet.")
if async_run_tensor_parallel_workers_only:
# Run only non-driver workers and just return futures.
return [
worker.execute_method(method, *args, **kwargs)
for worker in self.non_driver_workers
]
# Start all remote workers first.
worker_outputs = [
worker.execute_method(method, *args, **kwargs)
for worker in self.workers
]
driver_worker_method = getattr(self.driver_worker, method)
driver_worker_output = driver_worker_method(*args, **kwargs)
# Get the results of the workers.
return [driver_worker_output
] + [output.get() for output in worker_outputs]
def check_health(self) -> None:
"""Raises an error if engine is unhealthy."""
if self.worker_monitor is not None and not self.worker_monitor.is_alive(
):
raise RuntimeError("Worker processes are not running")
def _wait_for_tasks_completion(self, parallel_worker_tasks: Any) -> None:
"""Wait for futures returned from _run_workers() with
async_run_remote_workers_only to complete."""
for result in parallel_worker_tasks:
result.get()
class MultiprocessingGPUExecutorAsync(MultiprocessingGPUExecutor,
DistributedGPUExecutorAsync):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.driver_exec_model = make_async(self.driver_worker.execute_model)
self.pp_locks: Optional[List[asyncio.Lock]] = None
async def _driver_execute_model_async(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
if not self.tp_driver_workers:
return await self.driver_exec_model(execute_model_req)
if self.pp_locks is None:
# This locks each pipeline parallel stage so multiple virtual
# engines can't execute on the same stage at the same time
# We create the locks here to avoid creating them in the constructor
# which uses a different asyncio loop.
self.pp_locks = [
asyncio.Lock()
for _ in range(self.parallel_config.pipeline_parallel_size)
]
tasks = [
asyncio.create_task(
_run_task_with_lock(self.driver_exec_model, self.pp_locks[0],
execute_model_req))
]
for pp_rank, driver_worker in enumerate(self.tp_driver_workers,
start=1):
tasks.append(
asyncio.create_task(
_run_task_with_lock(driver_worker.execute_method_async,
self.pp_locks[pp_rank],
"execute_model", execute_model_req)))
results = await asyncio.gather(*tasks)
# Only the last PP stage has the final results.
return results[-1]
async def _start_worker_execution_loop(self):
coros = [
worker.execute_method_async("start_worker_execution_loop")
for worker in self.non_driver_workers
]
return await asyncio.gather(*coros)