63 lines
1.9 KiB
Python
63 lines
1.9 KiB
Python
![]() |
from typing import List, Optional
|
||
|
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from cacheflow.outputs import RequestOutput
|
||
|
from cacheflow.sampling_params import SamplingParams
|
||
|
from cacheflow.server.arg_utils import ServerArgs
|
||
|
from cacheflow.server.llm_server import LLMServer
|
||
|
from cacheflow.utils import Counter
|
||
|
|
||
|
|
||
|
class LLM:
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model: str,
|
||
|
tensor_parallel_size: int = 1,
|
||
|
dtype: str = "default",
|
||
|
seed: int = 0,
|
||
|
**kwargs,
|
||
|
) -> None:
|
||
|
if "disable_log_stats" not in kwargs:
|
||
|
kwargs["disable_log_stats"] = True
|
||
|
server_args = ServerArgs(
|
||
|
model=model,
|
||
|
tensor_parallel_size=tensor_parallel_size,
|
||
|
dtype=dtype,
|
||
|
seed=seed,
|
||
|
**kwargs,
|
||
|
)
|
||
|
self.llm_server = LLMServer.from_server_args(server_args)
|
||
|
self.request_counter = Counter()
|
||
|
|
||
|
def generate(
|
||
|
self,
|
||
|
prompts: List[str],
|
||
|
sampling_params: Optional[SamplingParams] = None,
|
||
|
use_tqdm: bool = True,
|
||
|
) -> List[RequestOutput]:
|
||
|
if sampling_params is None:
|
||
|
sampling_params = SamplingParams()
|
||
|
# Initialize tqdm.
|
||
|
if use_tqdm:
|
||
|
pbar = tqdm(total=len(prompts), desc="Processed prompts")
|
||
|
|
||
|
# Add requests to the server.
|
||
|
for prompt in prompts:
|
||
|
request_id = str(next(self.request_counter))
|
||
|
self.llm_server.add_request(request_id, prompt, sampling_params)
|
||
|
|
||
|
# Run the server.
|
||
|
outputs: List[RequestOutput] = []
|
||
|
while self.llm_server.has_unfinished_requests():
|
||
|
step_outputs = self.llm_server.step()
|
||
|
for output in step_outputs:
|
||
|
if output.done:
|
||
|
outputs.append(output)
|
||
|
if use_tqdm:
|
||
|
pbar.update(1)
|
||
|
if use_tqdm:
|
||
|
pbar.close()
|
||
|
return outputs
|