409 lines
15 KiB
Python
Raw Normal View History

2024-02-21 09:34:30 -08:00
# coding=utf-8
# Copyright 2023 The vLLM team.
# Copyright (c) Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Gemma model compatible with HuggingFace weights."""
from functools import lru_cache
from typing import Iterable, List, Optional, Set, Tuple
2024-02-21 09:34:30 -08:00
import torch
from torch import nn
from transformers import GemmaConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig, LoRAConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.logger import init_logger
2024-02-21 20:17:52 -08:00
from vllm.model_executor.layers.activation import GeluAndMul
from vllm.model_executor.layers.layernorm import GemmaRMSNorm
from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
2024-02-21 09:34:30 -08:00
QKVParallelLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig)
from vllm.model_executor.layers.rotary_embedding import GemmaRotaryEmbedding
2024-02-21 09:34:30 -08:00
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
2024-02-21 09:34:30 -08:00
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors, SamplerOutput
2024-02-21 09:34:30 -08:00
from .interfaces import SupportsLoRA
logger = init_logger(__name__)
@lru_cache(maxsize=None)
def _get_gemma_act_fn(
hidden_act: Optional[str],
hidden_activation: Optional[str],
) -> nn.Module:
if hidden_activation is None:
if hidden_act is not None:
logger.warning(
"Gemma's activation function was incorrectly set to exact GeLU "
"in the config JSON file when it was initially released. "
"Changing the activation function to approximate GeLU "
"(`gelu_pytorch_tanh`). If you want to use the legacy "
"`%s`, edit the config JSON to set "
"`hidden_activation=%s` instead of `hidden_act`. "
"See https://github.com/huggingface/transformers/pull/29402 "
"for more details.", hidden_act, hidden_act)
return GeluAndMul(approximate="tanh")
elif hidden_activation == "gelu_pytorch_tanh":
return GeluAndMul(approximate="tanh")
elif hidden_activation == "gelu":
return GeluAndMul(approximate="none")
else:
raise ValueError(f"Activation function {hidden_act} is not "
"supported for Gemma models.")
2024-02-21 09:34:30 -08:00
class GemmaMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: Optional[str] = None,
hidden_activation: Optional[str] = None,
quant_config: Optional[QuantizationConfig] = None,
2024-02-21 09:34:30 -08:00
) -> None:
super().__init__()
2024-02-21 20:17:52 -08:00
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
quant_config=quant_config)
2024-02-21 09:34:30 -08:00
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config)
self.act_fn = _get_gemma_act_fn(hidden_act, hidden_activation)
2024-02-21 09:34:30 -08:00
def forward(self, x):
2024-02-21 20:17:52 -08:00
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
2024-02-21 09:34:30 -08:00
class GemmaAttention(nn.Module):
def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int = 8192,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
2024-02-21 09:34:30 -08:00
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
2024-02-21 09:34:30 -08:00
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
2024-02-21 09:34:30 -08:00
)
# TODO(woosuk): Use the `get_rope` interface.
self.rotary_emb = GemmaRotaryEmbedding(
2024-02-21 09:34:30 -08:00
self.head_dim,
rotary_dim=self.head_dim,
max_position_embeddings=max_position_embeddings,
2024-02-21 09:34:30 -08:00
base=self.rope_theta,
is_neox_style=True,
dtype=torch.get_default_dtype(),
2024-02-21 09:34:30 -08:00
)
2024-03-07 01:45:50 -08:00
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config)
2024-02-21 09:34:30 -08:00
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
2024-02-21 09:34:30 -08:00
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
2024-02-21 09:34:30 -08:00
output, _ = self.o_proj(attn_output)
return output
class GemmaDecoderLayer(nn.Module):
def __init__(
self,
config: GemmaConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
2024-02-21 09:34:30 -08:00
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GemmaAttention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
head_dim=config.head_dim,
max_position_embeddings=config.max_position_embeddings,
rope_theta=config.rope_theta,
cache_config=cache_config,
quant_config=quant_config,
2024-02-21 09:34:30 -08:00
)
self.mlp = GemmaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
hidden_activation=getattr(config, "hidden_activation", None),
quant_config=quant_config,
2024-02-21 09:34:30 -08:00
)
self.input_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
2024-02-21 09:34:30 -08:00
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
residual: Optional[torch.Tensor],
2024-02-21 09:34:30 -08:00
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
2024-02-21 09:34:30 -08:00
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
2024-02-21 09:34:30 -08:00
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
2024-02-21 09:34:30 -08:00
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
2024-02-21 09:34:30 -08:00
class GemmaModel(nn.Module):
def __init__(
self,
config: GemmaConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
2024-02-21 09:34:30 -08:00
) -> None:
super().__init__()
self.config = config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList([
GemmaDecoderLayer(config, cache_config, quant_config)
2024-02-21 09:34:30 -08:00
for _ in range(config.num_hidden_layers)
])
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
2024-02-21 09:34:30 -08:00
# Normalize the embedding by sqrt(hidden_size)
# The normalizer's data type should be downcasted to the model's
# data type such as bfloat16, not float32.
# See https://github.com/huggingface/transformers/pull/29402
normalizer = self.config.hidden_size**0.5
self.register_buffer("normalizer", torch.tensor(normalizer))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
2024-02-21 09:34:30 -08:00
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
inputs_embeds: Optional[torch.Tensor] = None,
2024-02-21 09:34:30 -08:00
) -> torch.Tensor:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
hidden_states *= self.normalizer
residual = None
2024-02-21 09:34:30 -08:00
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
2024-02-21 09:34:30 -08:00
positions,
hidden_states,
kv_caches[i],
attn_metadata,
residual,
2024-02-21 09:34:30 -08:00
)
hidden_states, _ = self.norm(hidden_states, residual)
2024-02-21 09:34:30 -08:00
return hidden_states
class GemmaForCausalLM(nn.Module, SupportsLoRA):
2024-02-28 13:03:28 -08:00
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
# LoRA specific attributes
supported_lora_modules = [
"qkv_proj",
"o_proj",
"gate_up_proj",
"down_proj",
]
# Gemma does not apply LoRA to the embedding layer.
embedding_modules = {}
embedding_padding_modules = []
2024-02-21 09:34:30 -08:00
def __init__(
self,
config: GemmaConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
2024-02-28 13:03:28 -08:00
lora_config: Optional[LoRAConfig] = None,
2024-02-21 09:34:30 -08:00
) -> None:
super().__init__()
2024-02-21 09:34:30 -08:00
self.config = config
self.lora_config = lora_config
self.quant_config = quant_config
self.model = GemmaModel(config, cache_config, quant_config)
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
2024-02-21 09:34:30 -08:00
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
2024-02-21 09:34:30 -08:00
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata)
2024-02-21 09:34:30 -08:00
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata) -> torch.Tensor:
logits = self.logits_processor(self.model.embed_tokens, hidden_states,
sampling_metadata)
return logits
2024-02-21 09:34:30 -08:00
def sample(
self,
logits: torch.Tensor,
2024-02-21 09:34:30 -08:00
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
2024-02-21 09:34:30 -08:00
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
2024-02-21 09:34:30 -08:00
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
2024-02-21 20:17:52 -08:00
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
2024-02-21 09:34:30 -08:00
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
2024-02-21 09:34:30 -08:00
for (param_name, shard_name, shard_id) in stacked_params_mapping:
if shard_name not in name:
continue
name = name.replace(shard_name, param_name)
2024-03-07 08:19:14 +08:00
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
2024-02-21 09:34:30 -08:00
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# lm_head is not used in vllm as it is tied with embed_token.
# To prevent errors, skip loading lm_head.weight.
if "lm_head.weight" in name:
continue
2024-03-07 08:19:14 +08:00
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
2024-02-21 09:34:30 -08:00
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
unloaded_params = params_dict.keys() - loaded_params
if unloaded_params:
raise RuntimeError(
"Some weights are not initialized from checkpoints: "
f"{unloaded_params}")