2024-05-16 18:32:50 -04:00
|
|
|
#include <torch/extension.h>
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <sstream>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
// clang-format will break include orders
|
|
|
|
// clang-format off
|
|
|
|
#include "cutlass/cutlass.h"
|
|
|
|
|
|
|
|
#include "cute/tensor.hpp"
|
|
|
|
#include "cute/atom/mma_atom.hpp"
|
|
|
|
#include "cutlass/numeric_types.h"
|
|
|
|
|
|
|
|
#include "cutlass/gemm/device/gemm_universal_adapter.h"
|
|
|
|
#include "cutlass/gemm/kernel/gemm_universal.hpp"
|
|
|
|
#include "cutlass/epilogue/collective/collective_builder.hpp"
|
|
|
|
#include "cutlass/gemm/collective/collective_builder.hpp"
|
|
|
|
|
|
|
|
#include "common.hpp"
|
|
|
|
// clang-format on
|
|
|
|
|
|
|
|
using namespace cute;
|
|
|
|
|
|
|
|
/*
|
|
|
|
This defines a quantized GEMM operation with dequantized output, similar to
|
|
|
|
torch._scaled_mm. It is defined using the CUTLASS 3.x API, and is used for
|
|
|
|
NVIDIA GPUs with sm90a (Hopper) or later.
|
|
|
|
|
|
|
|
A and B may be both either int8 or fp8_e4m3. A can be quantized per-tensor or
|
|
|
|
per-row. B can be quantized per-tensor or per-column.
|
|
|
|
Any combination of per-tensor and per-row or column is supported.
|
|
|
|
A and B must have symmetric quantization (zero point == 0).
|
|
|
|
|
|
|
|
So the GEMM operation is D = (a_scales * A) (b_scales * B), where the
|
|
|
|
scales are applied elementwise with numpy-style broadcasting.
|
|
|
|
|
|
|
|
ScaleA and ScaleB define the epilogue functions that apply the scales for
|
|
|
|
the A and B operands respectively. These scales may be either per-tensor or
|
|
|
|
per row or column.
|
|
|
|
*/
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
template <typename ElementAB_, typename ElementD_, typename TileShape,
|
|
|
|
typename ClusterShape, typename KernelSchedule,
|
|
|
|
typename EpilogueSchedule>
|
|
|
|
struct cutlass_3x_gemm {
|
|
|
|
using ElementAB = ElementAB_;
|
|
|
|
using ElementD = ElementD_;
|
|
|
|
using ElementAcc =
|
|
|
|
typename std::conditional<std::is_same_v<ElementAB, int8_t>, int32_t,
|
|
|
|
float>::type;
|
|
|
|
|
|
|
|
using EpilogueDescriptor =
|
|
|
|
cutlass::epilogue::collective::detail::EpilogueDescriptor<
|
|
|
|
TileShape, cutlass::epilogue::collective::EpilogueTileAuto, ElementD,
|
|
|
|
ElementD, EpilogueSchedule>;
|
|
|
|
|
|
|
|
using Accum = cutlass::epilogue::fusion::Sm90AccFetch;
|
|
|
|
|
|
|
|
using ScaleA = cutlass::epilogue::fusion::Sm90ColBroadcast<
|
|
|
|
0 /*Stages*/, typename EpilogueDescriptor::TileShape, float,
|
|
|
|
Stride<Int<1>, Int<0>, Int<0>>>;
|
|
|
|
|
|
|
|
using ScaleBDescriptor =
|
|
|
|
cutlass::epilogue::collective::detail::RowBroadcastDescriptor<
|
|
|
|
EpilogueDescriptor, float>;
|
|
|
|
|
|
|
|
using ScaleB = cutlass::epilogue::fusion::Sm90RowBroadcast<
|
|
|
|
ScaleBDescriptor::Stages, typename EpilogueDescriptor::TileShape,
|
|
|
|
typename ScaleBDescriptor::Element, Stride<Int<0>, Int<1>, Int<0>>>;
|
|
|
|
|
|
|
|
using Compute0 = cutlass::epilogue::fusion::Sm90Compute<
|
|
|
|
cutlass::multiplies, float, float,
|
|
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
|
|
|
|
using EVTCompute0 =
|
|
|
|
cutlass::epilogue::fusion::Sm90EVT<Compute0, ScaleB, Accum>;
|
|
|
|
|
|
|
|
using Compute1 = cutlass::epilogue::fusion::Sm90Compute<
|
|
|
|
cutlass::multiplies, ElementD, float,
|
|
|
|
cutlass::FloatRoundStyle::round_to_nearest>;
|
|
|
|
|
|
|
|
using EVTCompute1 =
|
|
|
|
cutlass::epilogue::fusion::Sm90EVT<Compute1, ScaleA, EVTCompute0>;
|
|
|
|
|
|
|
|
using StrideD = Stride<int64_t, Int<1>, Int<0>>;
|
|
|
|
using ElementC = void;
|
|
|
|
using StrideC = StrideD;
|
|
|
|
|
|
|
|
using CollectiveEpilogue =
|
|
|
|
typename cutlass::epilogue::collective::CollectiveBuilder<
|
|
|
|
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp, TileShape,
|
|
|
|
ClusterShape, cutlass::epilogue::collective::EpilogueTileAuto,
|
|
|
|
ElementAcc, float, ElementC, StrideC, 4, ElementD, StrideD, 4,
|
|
|
|
EpilogueSchedule, EVTCompute1>::CollectiveOp;
|
|
|
|
|
|
|
|
static constexpr size_t CEStorageSize =
|
|
|
|
sizeof(typename CollectiveEpilogue::SharedStorage);
|
|
|
|
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
|
|
|
|
static_cast<int>(CEStorageSize)>;
|
|
|
|
|
|
|
|
// clang-format off
|
|
|
|
using CollectiveMainloop =
|
|
|
|
typename cutlass::gemm::collective::CollectiveBuilder<
|
|
|
|
cutlass::arch::Sm90, cutlass::arch::OpClassTensorOp,
|
|
|
|
ElementAB, cutlass::layout::RowMajor, 16,
|
|
|
|
ElementAB, cutlass::layout::ColumnMajor, 16,
|
|
|
|
ElementAcc, TileShape, ClusterShape,
|
|
|
|
Stages,
|
|
|
|
KernelSchedule>::CollectiveOp;
|
|
|
|
// clang-format on
|
|
|
|
|
|
|
|
using KernelType = cutlass::gemm::kernel::GemmUniversal<
|
|
|
|
cute::Shape<int, int, int, int>, CollectiveMainloop, CollectiveEpilogue,
|
|
|
|
cutlass::gemm::PersistentScheduler>;
|
|
|
|
|
|
|
|
struct GemmKernel : public KernelType {};
|
|
|
|
};
|
|
|
|
|
|
|
|
template <typename Gemm>
|
2024-05-22 03:18:41 -04:00
|
|
|
void cutlass_scaled_mm_dq_dispatcher(torch::Tensor& out, torch::Tensor const& a,
|
|
|
|
torch::Tensor const& b,
|
|
|
|
torch::Tensor const& a_scales,
|
|
|
|
torch::Tensor const& b_scales) {
|
2024-05-16 18:32:50 -04:00
|
|
|
using ElementAB = typename Gemm::ElementAB;
|
|
|
|
using ElementD = typename Gemm::ElementD;
|
|
|
|
|
|
|
|
int32_t m = a.size(0);
|
|
|
|
int32_t n = b.size(1);
|
|
|
|
int32_t k = a.size(1);
|
|
|
|
|
|
|
|
int64_t lda = a.stride(0);
|
|
|
|
int64_t ldb = b.stride(1);
|
|
|
|
int64_t ldc = out.stride(0);
|
|
|
|
|
|
|
|
using StrideA = Stride<int64_t, Int<1>, Int<0>>;
|
|
|
|
using StrideB = Stride<int64_t, Int<1>, Int<0>>;
|
|
|
|
using StrideC = typename Gemm::StrideC;
|
|
|
|
|
|
|
|
StrideA a_stride{lda, Int<1>{}, Int<0>{}};
|
|
|
|
StrideB b_stride{ldb, Int<1>{}, Int<0>{}};
|
|
|
|
StrideC c_stride{ldc, Int<1>{}, Int<0>{}};
|
|
|
|
|
|
|
|
using GemmKernel = typename Gemm::GemmKernel;
|
|
|
|
typename GemmKernel::ProblemShape prob_shape{m, n, k, 1};
|
|
|
|
|
2024-05-22 03:18:41 -04:00
|
|
|
auto a_ptr = static_cast<ElementAB*>(a.data_ptr());
|
|
|
|
auto b_ptr = static_cast<ElementAB*>(b.data_ptr());
|
2024-05-16 18:32:50 -04:00
|
|
|
typename GemmKernel::MainloopArguments mainloop_args{a_ptr, a_stride, b_ptr,
|
|
|
|
b_stride};
|
|
|
|
|
2024-05-22 03:18:41 -04:00
|
|
|
auto c_ptr = static_cast<ElementD*>(out.data_ptr());
|
2024-05-16 18:32:50 -04:00
|
|
|
typename GemmKernel::EpilogueArguments epilogue_args{
|
|
|
|
{}, c_ptr, c_stride, c_ptr, c_stride};
|
|
|
|
|
|
|
|
typename GemmKernel::Arguments args{cutlass::gemm::GemmUniversalMode::kGemm,
|
|
|
|
prob_shape, mainloop_args, epilogue_args};
|
|
|
|
|
|
|
|
using ScaleA_Args = typename Gemm::ScaleA::Arguments;
|
|
|
|
using ScaleB_Args = typename Gemm::ScaleB::Arguments;
|
|
|
|
ScaleA_Args a_args = a_scales.numel() == 1
|
|
|
|
? ScaleA_Args{nullptr, a_scales.item<float>(), {}}
|
|
|
|
: ScaleA_Args{a_scales.data_ptr<float>(), {}, {}};
|
|
|
|
|
|
|
|
ScaleB_Args b_args = b_scales.numel() == 1
|
|
|
|
? ScaleB_Args{nullptr, b_scales.item<float>(), {}}
|
|
|
|
: ScaleB_Args{b_scales.data_ptr<float>(), {}, {}};
|
|
|
|
|
|
|
|
args.epilogue.thread = {a_args, {b_args}};
|
|
|
|
|
|
|
|
// Launch the CUTLASS GEMM kernel.
|
|
|
|
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
|
|
|
GemmOp gemm_op;
|
|
|
|
CUTLASS_CHECK(gemm_op.can_implement(args));
|
|
|
|
|
|
|
|
size_t workspace_size = gemm_op.get_workspace_size(args);
|
|
|
|
TORCH_CHECK(workspace_size == 0);
|
|
|
|
|
|
|
|
cutlass::Status status = gemm_op.run(args);
|
|
|
|
CUTLASS_CHECK(status);
|
|
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
2024-05-22 03:18:41 -04:00
|
|
|
void cutlass_scaled_mm_dq_sm90(torch::Tensor& out, torch::Tensor const& a,
|
|
|
|
torch::Tensor const& b,
|
|
|
|
torch::Tensor const& a_scales,
|
|
|
|
torch::Tensor const& b_scales) {
|
2024-05-16 18:32:50 -04:00
|
|
|
TORCH_CHECK(a_scales.dtype() == torch::kFloat32);
|
|
|
|
TORCH_CHECK(b_scales.dtype() == torch::kFloat32);
|
|
|
|
|
|
|
|
if (a.dtype() == torch::kInt8) {
|
|
|
|
TORCH_CHECK(b.dtype() == torch::kInt8);
|
|
|
|
|
|
|
|
using TileShape = Shape<_128, _128, _128>;
|
|
|
|
using ClusterShape = Shape<_1, _2, _1>;
|
|
|
|
using KernelSchedule =
|
|
|
|
typename cutlass::gemm::KernelTmaWarpSpecializedPingpong;
|
|
|
|
using EpilogueSchedule = typename cutlass::epilogue::TmaWarpSpecialized;
|
|
|
|
|
|
|
|
if (out.dtype() == torch::kBFloat16) {
|
|
|
|
return cutlass_scaled_mm_dq_dispatcher<
|
|
|
|
cutlass_3x_gemm<int8_t, cutlass::bfloat16_t, TileShape, ClusterShape,
|
|
|
|
KernelSchedule, EpilogueSchedule>>(
|
|
|
|
out, a, b, a_scales, b_scales);
|
|
|
|
} else {
|
|
|
|
TORCH_CHECK(out.dtype() == torch::kFloat16);
|
|
|
|
|
|
|
|
return cutlass_scaled_mm_dq_dispatcher<
|
|
|
|
cutlass_3x_gemm<int8_t, cutlass::half_t, TileShape, ClusterShape,
|
|
|
|
KernelSchedule, EpilogueSchedule>>(
|
|
|
|
out, a, b, a_scales, b_scales);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
TORCH_CHECK(a.dtype() == torch::kFloat8_e4m3fn);
|
|
|
|
TORCH_CHECK(b.dtype() == torch::kFloat8_e4m3fn);
|
|
|
|
|
|
|
|
using TileShape = Shape<_128, _128, _128>;
|
|
|
|
using ClusterShape = Shape<_1, _2, _1>;
|
|
|
|
using KernelSchedule =
|
|
|
|
typename cutlass::gemm::KernelCpAsyncWarpSpecializedCooperative;
|
|
|
|
using EpilogueSchedule =
|
|
|
|
typename cutlass::epilogue::TmaWarpSpecializedCooperative;
|
|
|
|
|
|
|
|
if (out.dtype() == torch::kBFloat16) {
|
|
|
|
return cutlass_scaled_mm_dq_dispatcher<
|
|
|
|
cutlass_3x_gemm<cutlass::float_e4m3_t, cutlass::bfloat16_t, TileShape,
|
|
|
|
ClusterShape, KernelSchedule, EpilogueSchedule>>(
|
|
|
|
out, a, b, a_scales, b_scales);
|
|
|
|
} else {
|
|
|
|
TORCH_CHECK(out.dtype() == torch::kFloat16);
|
|
|
|
|
|
|
|
return cutlass_scaled_mm_dq_dispatcher<
|
|
|
|
cutlass_3x_gemm<cutlass::float_e4m3_t, cutlass::half_t, TileShape,
|
|
|
|
ClusterShape, KernelSchedule, EpilogueSchedule>>(
|
|
|
|
out, a, b, a_scales, b_scales);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|