2023-05-14 22:19:19 -07:00
|
|
|
/*
|
2024-05-22 03:18:41 -04:00
|
|
|
* Adapted from
|
|
|
|
* https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
|
2023-06-17 03:07:40 -07:00
|
|
|
* Copyright (c) 2023, The vLLM team.
|
2023-05-14 22:19:19 -07:00
|
|
|
* Copyright (c) 2020-2023, NVIDIA CORPORATION. All rights reserved.
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
* you may not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*/
|
2023-05-03 13:40:13 -07:00
|
|
|
#pragma once
|
|
|
|
|
2023-12-08 15:16:52 +08:00
|
|
|
#include "../cuda_compat.h"
|
2023-05-03 14:09:44 -07:00
|
|
|
#include "attention_dtypes.h"
|
2023-05-03 13:40:13 -07:00
|
|
|
|
|
|
|
#include <float.h>
|
|
|
|
#include <type_traits>
|
|
|
|
|
2023-06-17 03:07:40 -07:00
|
|
|
namespace vllm {
|
2023-05-03 13:40:13 -07:00
|
|
|
|
|
|
|
// Q*K^T operation.
|
2024-05-22 03:18:41 -04:00
|
|
|
template <int THREAD_GROUP_SIZE, typename Vec, int N>
|
2023-05-03 13:40:13 -07:00
|
|
|
inline __device__ float qk_dot_(const Vec (&q)[N], const Vec (&k)[N]) {
|
|
|
|
using A_vec = typename FloatVec<Vec>::Type;
|
|
|
|
// Compute the parallel products for Q*K^T (treat vector lanes separately).
|
|
|
|
A_vec qk_vec = mul<A_vec, Vec, Vec>(q[0], k[0]);
|
|
|
|
#pragma unroll
|
|
|
|
for (int ii = 1; ii < N; ++ii) {
|
|
|
|
qk_vec = fma(q[ii], k[ii], qk_vec);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Finalize the reduction across lanes.
|
|
|
|
float qk = sum(qk_vec);
|
|
|
|
#pragma unroll
|
|
|
|
for (int mask = THREAD_GROUP_SIZE / 2; mask >= 1; mask /= 2) {
|
2023-12-08 15:16:52 +08:00
|
|
|
qk += VLLM_SHFL_XOR_SYNC(qk, mask);
|
2023-05-03 13:40:13 -07:00
|
|
|
}
|
|
|
|
return qk;
|
|
|
|
}
|
|
|
|
|
2024-05-22 03:18:41 -04:00
|
|
|
template <typename T, int THREAD_GROUP_SIZE>
|
2023-05-03 13:40:13 -07:00
|
|
|
struct Qk_dot {
|
2024-05-22 03:18:41 -04:00
|
|
|
template <typename Vec, int N>
|
2023-05-03 13:40:13 -07:00
|
|
|
static inline __device__ float dot(const Vec (&q)[N], const Vec (&k)[N]) {
|
|
|
|
return qk_dot_<THREAD_GROUP_SIZE>(q, k);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2024-05-22 03:18:41 -04:00
|
|
|
} // namespace vllm
|