vllm/vllm/entrypoints/openai/serving_chat.py

417 lines
17 KiB
Python
Raw Normal View History

2024-01-17 05:33:14 +00:00
import codecs
2024-03-25 23:59:47 +09:00
import time
from dataclasses import dataclass
from typing import (AsyncGenerator, AsyncIterator, Iterable, List, Optional,
TypedDict, Union, cast, final)
2024-03-25 23:59:47 +09:00
2024-01-17 05:33:14 +00:00
from fastapi import Request
from openai.types.chat import ChatCompletionContentPartTextParam
2024-03-25 23:59:47 +09:00
from vllm.config import ModelConfig
2024-01-17 05:33:14 +00:00
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.entrypoints.openai.protocol import (
ChatCompletionContentPartParam, ChatCompletionMessageParam,
2024-01-17 05:33:14 +00:00
ChatCompletionRequest, ChatCompletionResponse,
ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse, ChatMessage, DeltaMessage, ErrorResponse,
UsageInfo)
from vllm.entrypoints.openai.serving_engine import (LoRAModulePath,
OpenAIServing)
2024-03-25 23:59:47 +09:00
from vllm.logger import init_logger
from vllm.model_executor.guided_decoding import (
get_guided_decoding_logits_processor)
2024-03-25 23:59:47 +09:00
from vllm.outputs import RequestOutput
from vllm.utils import random_uuid
2024-01-17 05:33:14 +00:00
logger = init_logger(__name__)
@final # So that it should be compatible with Dict[str, str]
class ConversationMessage(TypedDict):
role: str
content: str
@dataclass(frozen=True)
class ChatMessageParseResult:
messages: List[ConversationMessage]
2024-01-17 05:33:14 +00:00
class OpenAIServingChat(OpenAIServing):
def __init__(self,
engine: AsyncLLMEngine,
model_config: ModelConfig,
served_model_names: List[str],
2024-01-17 05:33:14 +00:00
response_role: str,
lora_modules: Optional[List[LoRAModulePath]] = None,
chat_template: Optional[str] = None):
super().__init__(engine=engine,
model_config=model_config,
served_model_names=served_model_names,
lora_modules=lora_modules)
2024-05-03 20:04:14 +02:00
2024-01-17 05:33:14 +00:00
self.response_role = response_role
self._load_chat_template(chat_template)
def _load_chat_template(self, chat_template: Optional[str]):
tokenizer = self.tokenizer
if chat_template is not None:
try:
with open(chat_template, "r") as f:
tokenizer.chat_template = f.read()
except OSError as e:
JINJA_CHARS = "{}\n"
if not any(c in chat_template for c in JINJA_CHARS):
msg = (f"The supplied chat template ({chat_template}) "
f"looks like a file path, but it failed to be "
f"opened. Reason: {e}")
raise ValueError(msg) from e
# If opening a file fails, set chat template to be args to
# ensure we decode so our escape are interpreted correctly
tokenizer.chat_template = codecs.decode(
chat_template, "unicode_escape")
logger.info("Using supplied chat template:\n%s",
tokenizer.chat_template)
elif tokenizer.chat_template is not None:
logger.info("Using default chat template:\n%s",
tokenizer.chat_template)
else:
logger.warning(
"No chat template provided. Chat API will not work.")
2024-01-17 05:33:14 +00:00
def _parse_chat_message_content_parts(
self,
role: str,
parts: Iterable[ChatCompletionContentPartParam],
) -> ChatMessageParseResult:
texts: List[str] = []
for _, part in enumerate(parts):
part_type = part["type"]
if part_type == "text":
text = cast(ChatCompletionContentPartTextParam, part)["text"]
texts.append(text)
else:
raise NotImplementedError(f"Unknown part type: {part_type}")
messages = [ConversationMessage(role=role, content="\n".join(texts))]
return ChatMessageParseResult(messages=messages)
def _parse_chat_message_content(
self,
message: ChatCompletionMessageParam,
) -> ChatMessageParseResult:
role = message["role"]
content = message.get("content")
if content is None:
return ChatMessageParseResult(messages=[])
if isinstance(content, str):
messages = [ConversationMessage(role=role, content=content)]
return ChatMessageParseResult(messages=messages)
return self._parse_chat_message_content_parts(role, content)
2024-01-17 05:33:14 +00:00
async def create_chat_completion(
self,
request: ChatCompletionRequest,
raw_request: Optional[Request] = None
2024-01-17 05:33:14 +00:00
) -> Union[ErrorResponse, AsyncGenerator[str, None],
ChatCompletionResponse]:
"""Completion API similar to OpenAI's API.
See https://platform.openai.com/docs/api-reference/chat/create
for the API specification. This API mimics the OpenAI
ChatCompletion API.
2024-01-17 05:33:14 +00:00
NOTE: Currently we do not support the following feature:
2024-01-17 05:33:14 +00:00
- function_call (Users should implement this by themselves)
"""
error_check_ret = await self._check_model(request)
if error_check_ret is not None:
return error_check_ret
try:
conversation: List[ConversationMessage] = []
for msg in request.messages:
parsed_msg = self._parse_chat_message_content(msg)
conversation.extend(parsed_msg.messages)
2024-01-17 05:33:14 +00:00
prompt = self.tokenizer.apply_chat_template(
conversation=conversation,
2024-01-17 05:33:14 +00:00
tokenize=False,
add_generation_prompt=request.add_generation_prompt,
)
2024-01-17 05:33:14 +00:00
except Exception as e:
logger.error("Error in applying chat template from request: %s", e)
2024-01-17 05:33:14 +00:00
return self.create_error_response(str(e))
request_id = f"cmpl-{random_uuid()}"
try:
# Tokenize/detokenize depending on prompt format (string/token list)
prompt_ids, prompt_text = self._validate_prompt_and_tokenize(
request, prompt=prompt, add_special_tokens=False)
sampling_params = request.to_sampling_params()
lora_request = self._maybe_get_lora(request)
decoding_config = await self.engine.get_decoding_config()
guided_decoding_backend = request.guided_decoding_backend \
or decoding_config.guided_decoding_backend
guided_decode_logits_processor = (
await get_guided_decoding_logits_processor(
guided_decoding_backend, request, await
self.engine.get_tokenizer()))
if guided_decode_logits_processor:
if sampling_params.logits_processors is None:
sampling_params.logits_processors = []
sampling_params.logits_processors.append(
guided_decode_logits_processor)
2024-01-17 05:33:14 +00:00
except ValueError as e:
return self.create_error_response(str(e))
result_generator = self.engine.generate(
{
"prompt": prompt_text,
"prompt_token_ids": prompt_ids
},
sampling_params,
request_id,
lora_request,
)
2024-01-17 05:33:14 +00:00
# Streaming response
if request.stream:
return self.chat_completion_stream_generator(
request, result_generator, request_id, conversation)
2024-01-17 05:33:14 +00:00
else:
try:
return await self.chat_completion_full_generator(
request, raw_request, result_generator, request_id,
conversation)
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
return self.create_error_response(str(e))
2024-01-17 05:33:14 +00:00
def get_chat_request_role(self, request: ChatCompletionRequest) -> str:
if request.add_generation_prompt:
return self.response_role
else:
return request.messages[-1]["role"]
2024-01-17 05:33:14 +00:00
async def chat_completion_stream_generator(
self, request: ChatCompletionRequest,
result_generator: AsyncIterator[RequestOutput], request_id: str,
conversation: List[ConversationMessage]
) -> AsyncGenerator[str, None]:
model_name = self.served_model_names[0]
created_time = int(time.time())
2024-01-17 05:33:14 +00:00
chunk_object_type = "chat.completion.chunk"
first_iteration = True
2024-01-17 05:33:14 +00:00
# Send response for each token for each request.n (index)
assert request.n is not None
2024-01-17 05:33:14 +00:00
previous_texts = [""] * request.n
previous_num_tokens = [0] * request.n
finish_reason_sent = [False] * request.n
try:
async for res in result_generator:
# We need to do it here, because if there are exceptions in
# the result_generator, it needs to be sent as the FIRST
# response (by the try...catch).
if first_iteration:
# Send first response for each request.n (index) with
# the role
role = self.get_chat_request_role(request)
for i in range(request.n):
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(role=role),
logprobs=None,
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
# Send response to echo the input portion of the
# last message
if request.echo:
last_msg_content = ""
if conversation and conversation[-1].get(
"content") and conversation[-1].get(
"role") == role:
last_msg_content = conversation[-1]["content"]
if last_msg_content:
for i in range(request.n):
choice_data = (
ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(
content=last_msg_content),
finish_reason=None))
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
logprobs=None,
model=model_name)
data = chunk.model_dump_json(
exclude_unset=True)
yield f"data: {data}\n\n"
first_iteration = False
for output in res.outputs:
i = output.index
if finish_reason_sent[i]:
continue
delta_token_ids = output.token_ids[previous_num_tokens[i]:]
top_logprobs = output.logprobs[
previous_num_tokens[i]:] if output.logprobs else None
if request.logprobs:
logprobs = self._create_logprobs(
token_ids=delta_token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
initial_text_offset=len(previous_texts[i]),
)
else:
logprobs = None
delta_text = output.text[len(previous_texts[i]):]
previous_texts[i] = output.text
previous_num_tokens[i] = len(output.token_ids)
if output.finish_reason is None:
# Send token-by-token response for each request.n
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=None)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
data = chunk.model_dump_json(exclude_unset=True)
yield f"data: {data}\n\n"
else:
# Send the finish response for each request.n only once
prompt_tokens = len(res.prompt_token_ids)
final_usage = UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=previous_num_tokens[i],
total_tokens=prompt_tokens +
previous_num_tokens[i],
)
choice_data = ChatCompletionResponseStreamChoice(
index=i,
delta=DeltaMessage(content=delta_text),
logprobs=logprobs,
finish_reason=output.finish_reason,
stop_reason=output.stop_reason)
chunk = ChatCompletionStreamResponse(
id=request_id,
object=chunk_object_type,
created=created_time,
choices=[choice_data],
model=model_name)
if final_usage is not None:
chunk.usage = final_usage
data = chunk.model_dump_json(exclude_unset=True,
exclude_none=True)
yield f"data: {data}\n\n"
finish_reason_sent[i] = True
except ValueError as e:
# TODO: Use a vllm-specific Validation Error
data = self.create_streaming_error_response(str(e))
yield f"data: {data}\n\n"
2024-01-17 05:33:14 +00:00
# Send the final done message after all response.n are finished
yield "data: [DONE]\n\n"
async def chat_completion_full_generator(
self, request: ChatCompletionRequest, raw_request: Optional[Request],
result_generator: AsyncIterator[RequestOutput], request_id: str,
conversation: List[ConversationMessage]
) -> Union[ErrorResponse, ChatCompletionResponse]:
2024-01-17 05:33:14 +00:00
model_name = self.served_model_names[0]
created_time = int(time.time())
final_res: Optional[RequestOutput] = None
2024-01-17 05:33:14 +00:00
async for res in result_generator:
if raw_request is not None and await raw_request.is_disconnected():
2024-01-17 05:33:14 +00:00
# Abort the request if the client disconnects.
await self.engine.abort(request_id)
return self.create_error_response("Client disconnected")
final_res = res
assert final_res is not None
choices = []
2024-01-17 05:33:14 +00:00
role = self.get_chat_request_role(request)
for output in final_res.outputs:
token_ids = output.token_ids
top_logprobs = output.logprobs
if request.logprobs:
logprobs = self._create_logprobs(
token_ids=token_ids,
top_logprobs=top_logprobs,
num_output_top_logprobs=request.logprobs,
)
else:
logprobs = None
2024-01-17 05:33:14 +00:00
choice_data = ChatCompletionResponseChoice(
index=output.index,
message=ChatMessage(role=role, content=output.text),
logprobs=logprobs,
2024-01-17 05:33:14 +00:00
finish_reason=output.finish_reason,
stop_reason=output.stop_reason,
2024-01-17 05:33:14 +00:00
)
choices.append(choice_data)
if request.echo:
last_msg_content = ""
if conversation and conversation[-1].get(
"content") and conversation[-1].get("role") == role:
last_msg_content = conversation[-1]["content"]
2024-01-17 05:33:14 +00:00
for choice in choices:
full_message = last_msg_content + choice.message.content
choice.message.content = full_message
num_prompt_tokens = len(final_res.prompt_token_ids)
num_generated_tokens = sum(
len(output.token_ids) for output in final_res.outputs)
usage = UsageInfo(
prompt_tokens=num_prompt_tokens,
completion_tokens=num_generated_tokens,
total_tokens=num_prompt_tokens + num_generated_tokens,
)
response = ChatCompletionResponse(
id=request_id,
created=created_time,
model=model_name,
choices=choices,
usage=usage,
)
return response