vllm/tests/core/utils.py

87 lines
2.6 KiB
Python
Raw Normal View History

import time
from typing import Iterable, Optional, Tuple
from vllm import SamplingParams
from vllm.lora.request import LoRARequest
from vllm.sequence import Logprob, Sequence, SequenceGroup
def create_dummy_prompt(
request_id: str,
prompt_length: int,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
use_beam_search: bool = False,
best_of: int = 1,
) -> Tuple[Sequence, SequenceGroup]:
if not block_size:
block_size = prompt_length
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size".
prompt_tokens = list(range(prompt_length))
prompt_str = " ".join([str(t) for t in prompt_tokens])
prompt = Sequence(int(request_id),
inputs={
"prompt": prompt_str,
"prompt_token_ids": prompt_tokens,
"multi_modal_data": None,
},
block_size=block_size)
seq_group = SequenceGroup(request_id=request_id,
seqs=[prompt],
arrival_time=time.time(),
sampling_params=SamplingParams(
use_beam_search=use_beam_search,
best_of=best_of),
lora_request=lora_request)
return prompt, seq_group
def create_seq_group(
seq_prompt_len: int = 1024,
seq_output_lens: Iterable[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
seqs = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
seq = Sequence(
seq_id=seq_id_start + seq_id_offset,
inputs={
"prompt": "",
"prompt_token_ids": prompt_token_ids,
"multi_modal_data": None,
},
block_size=16,
)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
seq_group = SequenceGroup(
request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
)
return seq_group
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size