2023-06-19 16:31:13 +08:00
< p align = "center" >
< picture >
< source media = "(prefers-color-scheme: dark)" srcset = "./docs/source/assets/logos/vllm-logo-text-dark.png" >
< img alt = "vLLM" src = "./docs/source/assets/logos/vllm-logo-text-light.png" width = 55% >
< / picture >
< / p >
2023-02-24 12:04:49 +00:00
2023-06-19 16:31:13 +08:00
< h3 align = "center" >
Easy, fast, and cheap LLM serving for everyone
< / h3 >
2023-02-24 12:04:49 +00:00
2023-06-19 16:31:13 +08:00
< p align = "center" >
| < a href = "https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/" > < b > Documentation< / b > < / a > | < a href = "" > < b > Blog< / b > < / a > |
2023-02-24 12:04:49 +00:00
2023-06-19 16:31:13 +08:00
< / p >
2023-02-24 12:04:49 +00:00
2023-06-19 16:31:13 +08:00
---
2023-05-20 13:06:59 -07:00
2023-06-19 16:31:13 +08:00
*Latest News* 🔥
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
- [2023/06] We officially released vLLM! vLLM has powered [LMSYS Vicuna and Chatbot Arena ](https://chat.lmsys.org ) since mid April. Check out our [blog post]().
---
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
vLLM is a fast and easy to use library for LLM inference and serving.
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
vLLM is fast with:
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
- State-of-the-art serving throughput
2023-06-18 03:19:38 -07:00
- Efficient management of attention key and value memory with **PagedAttention**
- Dynamic batching of incoming requests
- Optimized CUDA kernels
2023-06-19 16:31:13 +08:00
vLLM is flexible and easy to use with:
- Seamless integration with popular HuggingFace models
- High-throughput serving with various decoding algorithms, including *parallel sampling* , *beam search* , and more
2023-06-18 03:19:38 -07:00
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
2023-03-29 14:48:56 +08:00
2023-06-19 16:31:13 +08:00
Install vLLM with pip or [from source ](https://llm-serving-cacheflow.readthedocs-hosted.com/en/latest/getting_started/installation.html#build-from-source ):
```bash
pip install vllm
```
## Getting Started
Visit our [documentation ](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/ ) to get started.
- [Installation ](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/installation.html )
- [Quickstart ](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/getting_started/quickstart.html )
- [Supported Models ](https://llm-serving-cacheflow.readthedocs-hosted.com/_/sharing/Cyo52MQgyoAWRQ79XA4iA2k8euwzzmjY?next=/en/latest/models/supported_models.html )
2023-06-18 03:19:38 -07:00
## Performance
2023-03-29 14:48:56 +08:00
2023-06-18 03:19:38 -07:00
vLLM outperforms HuggingFace Transformers (HF) by up to 24x and Text Generation Inference (TGI) by up to 3.5x, in terms of throughput.
For details, check out our [blog post]().
2023-03-29 14:48:56 +08:00
2023-06-18 03:19:38 -07:00
< p align = "center" >
2023-06-19 16:31:13 +08:00
< picture >
< source media = "(prefers-color-scheme: dark)" srcset = "./docs/source/assets/figures/perf_a10g_n1_dark.png" >
< img src = "./docs/source/assets/figures/perf_a10g_n1_light.png" width = "45%" >
< / picture >
< picture >
< source media = "(prefers-color-scheme: dark)" srcset = "./docs/source/assets/figures/perf_a100_n1_dark.png" >
< img src = "./docs/source/assets/figures/perf_a100_n1_light.png" width = "45%" >
< / picture >
2023-06-18 03:19:38 -07:00
< br >
< em > Serving throughput when each request asks for 1 output completion. < / em >
< / p >
2023-04-01 01:07:57 +08:00
2023-06-18 03:19:38 -07:00
< p align = "center" >
2023-06-19 16:31:13 +08:00
< picture >
< source media = "(prefers-color-scheme: dark)" srcset = "./docs/source/assets/figures/perf_a10g_n3_dark.png" >
< img src = "./docs/source/assets/figures/perf_a10g_n3_light.png" width = "45%" >
< / picture >
< picture >
< source media = "(prefers-color-scheme: dark)" srcset = "./docs/source/assets/figures/perf_a100_n3_dark.png" >
< img src = "./docs/source/assets/figures/perf_a100_n3_light.png" width = "45%" >
< / picture > < br >
2023-06-18 03:19:38 -07:00
< em > Serving throughput when each request asks for 3 output completions. < / em >
< / p >
2023-04-01 01:07:57 +08:00
2023-06-18 03:19:38 -07:00
## Contributing
2023-04-01 01:07:57 +08:00
2023-06-18 03:19:38 -07:00
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md ](./CONTRIBUTING.md ) for how to get involved.