vllm/tests/models/test_internvl.py

365 lines
13 KiB
Python
Raw Normal View History

import types
from typing import List, Optional, Tuple, Type, Union
import pytest
import torch
from PIL.Image import Image
from transformers import AutoConfig
from vllm.multimodal.utils import rescale_image_size
from vllm.utils import is_cpu
from ..conftest import (IMAGE_ASSETS, HfRunner, PromptImageInput, VllmRunner,
_ImageAssets)
from .utils import check_logprobs_close
pytestmark = pytest.mark.vlm
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
"stop_sign":
"<|im_start|>User\n<image>\nWhat's the content in the center of the image?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501
"cherry_blossom":
"<|im_start|>User\n<image>\nWhat is the season?<|im_end|>\n<|im_start|>Assistant\n", # noqa: E501
})
HF_MULTIIMAGE_IMAGE_PROMPT = "<|im_start|>User\nImage-1: <image>\nImage-2: <image>\nDescribe the two images in detail.<|im_end|>\n<|im_start|>Assistant\n" # noqa: E501
models = [
"OpenGVLab/InternVL2-1B",
"OpenGVLab/InternVL2-2B",
# Broken due to outdated implementation of Phi-3
# See: https://huggingface.co/OpenGVLab/InternVL2-4B/discussions/3
# "OpenGVLab/InternVL2-4B",
]
# adapted from https://huggingface.co/OpenGVLab/InternVL2-1B/blob/main/modeling_internvl_chat.py
def generate(
self,
pixel_values: torch.FloatTensor,
input_ids: torch.FloatTensor,
attention_mask: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
"""Generate method for InternVL2 model without fixed use_cache."""
assert self.img_context_token_id is not None
vit_embeds = self.extract_feature(pixel_values)
input_embeds = self.language_model.get_input_embeddings()(input_ids)
B, N, C = input_embeds.shape
input_embeds = input_embeds.reshape(B * N, C)
input_ids = input_ids.reshape(B * N)
selected = (input_ids == self.img_context_token_id)
assert selected.sum() != 0
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
input_embeds = input_embeds.reshape(B, N, C)
outputs = self.language_model.generate(
inputs_embeds=input_embeds,
attention_mask=attention_mask,
**generate_kwargs,
)
return outputs
def run_test(
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
inputs: List[Tuple[List[str], PromptImageInput]],
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
mm_limit: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
"""Inference result should be the same between hf and vllm.
All the image fixtures for the test is under tests/images.
For huggingface runner, we provide the PIL images as input.
For vllm runner, we provide MultiModalDataDict objects
and corresponding MultiModalConfig as input.
Note, the text input is also adjusted to abide by vllm contract.
The text output is sanitized to be able to compare with hf.
"""
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
class InternVLProcessor:
"""A simple processor for InternVL2 which misses a processor."""
def __init__(self, hf_runner: HfRunner):
self.num_image_token = hf_runner.model.num_image_token
self.tokenizer = hf_runner.tokenizer
self.dtype = hf_runner.model.dtype
self.config = AutoConfig.from_pretrained(hf_runner.model_name)
self.vision_config = self.config.vision_config
self.use_thumbnail = self.config.use_thumbnail
self.min_num = self.config.min_dynamic_patch
self.max_num = self.config.max_dynamic_patch
self.image_size = self.vision_config.image_size
def __call__(self, text: str, images: Union[Image, List[Image]],
**kwargs):
from vllm.model_executor.models.internvl import (
IMG_CONTEXT, IMG_END, IMG_START, image_to_pixel_values)
images = [images] if isinstance(images, Image) else images
pixel_values = [
image_to_pixel_values(image, self.image_size, self.min_num,
self.max_num,
self.use_thumbnail).to(self.dtype)
for image in images
]
num_patches_list = [
pixel_value.shape[0] for pixel_value in pixel_values
]
pixel_values = torch.cat(pixel_values, dim=0)
for num_patches in num_patches_list:
context_tokens = IMG_CONTEXT * self.num_image_token \
* num_patches
image_tokens = IMG_START + context_tokens + IMG_END
text = text.replace('<image>', image_tokens, 1)
prompt = self.tokenizer(text, return_tensors="pt")
prompt.update({"pixel_values": pixel_values})
return prompt
# max_model_len should be greater than image_feature_size
with vllm_runner(model,
max_model_len=4096,
dtype=dtype,
limit_mm_per_prompt={"image": mm_limit},
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
vllm_outputs_per_image = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs
]
with hf_runner(model, dtype=dtype) as hf_model:
img_context_token_id = hf_model.tokenizer.convert_tokens_to_ids(
"<IMG_CONTEXT>")
hf_model.model.img_context_token_id = img_context_token_id
hf_model.processor = InternVLProcessor(hf_model)
hf_model.model.get_output_embeddings = lambda: \
hf_model.model.language_model.get_output_embeddings()
hf_model.model.generate = types.MethodType(generate, hf_model.model)
eos_token_id = hf_model.tokenizer.eos_token_id
hf_outputs_per_image = [
hf_model.generate_greedy_logprobs_limit(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=hf_images,
eos_token_id=eos_token_id)
for prompts, hf_images in inputs
]
for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
vllm_outputs_per_image):
# TODO: Check whether using original CLIPVisionModel can improve
# consistency against HF
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
def run_awq_test(
vllm_runner: Type[VllmRunner],
image_assets: _ImageAssets,
models: Tuple[str, str],
*,
size_factors: List[float],
dtype: str,
max_tokens: int,
num_logprobs: int,
tensor_parallel_size: int,
distributed_executor_backend: Optional[str] = None,
):
source_model, quant_model = models
images = [asset.pil_image for asset in image_assets]
inputs_per_image = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
# max_model_len should be greater than image_feature_size
with vllm_runner(source_model,
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
source_outputs_per_image = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs_per_image
]
with vllm_runner(quant_model,
quantization="awq",
max_model_len=4096,
dtype=dtype,
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend=distributed_executor_backend,
enforce_eager=True) as vllm_model:
quant_outputs_per_image = [
vllm_model.generate_greedy_logprobs(prompts,
max_tokens,
num_logprobs=num_logprobs,
images=images)
for prompts, images in inputs_per_image
]
for source_outputs, quant_outputs in zip(source_outputs_per_image,
quant_outputs_per_image):
# TODO: Check whether using original CLIPVisionModel can improve
# consistency against HF
check_logprobs_close(
outputs_0_lst=source_outputs,
outputs_1_lst=quant_outputs,
name_0="source",
name_1="awq",
)
target_dtype = "half"
if is_cpu():
target_dtype = "bfloat16"
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@torch.inference_mode()
def test_models(hf_runner, vllm_runner, image_assets, model, size_factors,
dtype: str, max_tokens: int, num_logprobs: int) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_image = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
run_test(
hf_runner,
vllm_runner,
inputs_per_image,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=1,
tensor_parallel_size=1,
)
@pytest.mark.parametrize("model", models)
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.5, 0.75, 1.0],
],
)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@torch.inference_mode()
def test_multi_images_models(hf_runner, vllm_runner, image_assets, model,
size_factors, dtype: str, max_tokens: int,
num_logprobs: int) -> None:
images = [asset.pil_image for asset in image_assets]
inputs_per_case = [
([HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors],
[[rescale_image_size(image, factor) for image in images]
for factor in size_factors])
]
run_test(
hf_runner,
vllm_runner,
inputs_per_case,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=2,
tensor_parallel_size=1,
)
@pytest.mark.parametrize(
"models", [("OpenGVLab/InternVL2-2B", "OpenGVLab/InternVL2-2B-AWQ")])
@pytest.mark.parametrize(
"size_factors",
[
# No image
[],
# Single-scale
[1.0],
# Single-scale, batched
[1.0, 1.0, 1.0],
# Multi-scale
[0.25, 0.5, 1.0],
],
)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@torch.inference_mode()
def test_awq_models(vllm_runner, image_assets, models, size_factors,
dtype: str, max_tokens: int, num_logprobs: int) -> None:
run_awq_test(
vllm_runner,
image_assets,
models,
size_factors=size_factors,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
tensor_parallel_size=1,
)