vllm/tests/models/decoder_only/language/test_gptq_marlin.py

85 lines
2.8 KiB
Python
Raw Normal View History

"""Compares the outputs of gptq vs gptq_marlin
Note: GPTQ and Marlin do not have bitwise correctness.
As a result, in this test, we just confirm that the top selected tokens of the
Marlin/GPTQ models are in the top 5 selections of each other.
Note: Marlin internally uses locks to synchronize the threads. This can
result in very slight nondeterminism for Marlin. As a result, we re-run the test
up to 3 times to see if we pass.
Run `pytest tests/models/test_gptq_marlin.py`.
"""
import os
import pytest
from tests.quantization.utils import is_quant_method_supported
from vllm.model_executor.layers.rotary_embedding import _ROPE_DICT
from ...utils import check_logprobs_close
os.environ["TOKENIZERS_PARALLELISM"] = "true"
MAX_MODEL_LEN = 1024
MODELS = [
# act_order==True, group_size=128
("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ", "main"),
# 8-bit, act_order==True, group_size=channelwise
("TheBloke/TinyLlama-1.1B-Chat-v1.0-GPTQ", "gptq-8bit--1g-actorder_True"),
# 4-bit, act_order==True, group_size=128
("TechxGenus/gemma-1.1-2b-it-GPTQ", "main")
]
@pytest.mark.quant_model
@pytest.mark.flaky(reruns=3)
@pytest.mark.skipif(not is_quant_method_supported("gptq_marlin"),
reason="gptq_marlin is not supported on this GPU type.")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half", "bfloat16"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models(
vllm_runner,
example_prompts,
model,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
model_name, revision = model
# Run marlin.
with vllm_runner(model_name=model_name,
revision=revision,
dtype=dtype,
quantization="marlin",
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=1) as gptq_marlin_model:
gptq_marlin_outputs = gptq_marlin_model.generate_greedy_logprobs(
example_prompts[:-1], max_tokens, num_logprobs)
_ROPE_DICT.clear() # clear rope cache to avoid rope dtype error
# Run gptq.
# The naive gptq kernel doesn't support bf16 yet.
# Here we always compare fp16/bf16 gpt marlin kernel
# to fp16 gptq kernel.
with vllm_runner(model_name=model_name,
revision=revision,
dtype="half",
quantization="gptq",
max_model_len=MAX_MODEL_LEN,
tensor_parallel_size=1) as gptq_model:
gptq_outputs = gptq_model.generate_greedy_logprobs(
example_prompts[:-1], max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=gptq_outputs,
outputs_1_lst=gptq_marlin_outputs,
name_0="gptq",
name_1="gptq_marlin",
)