vllm/tests/entrypoints/llm/test_generate.py

231 lines
6.5 KiB
Python
Raw Normal View History

import weakref
from typing import List
import pytest
from vllm import LLM, RequestOutput, SamplingParams
from ...conftest import cleanup
from ..openai.test_vision import TEST_IMAGE_URLS
MODEL_NAME = "facebook/opt-125m"
PROMPTS = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
TOKEN_IDS = [
[0],
[0, 1],
[0, 2, 1],
[0, 3, 1, 2],
]
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model=MODEL_NAME,
max_num_batched_tokens=4096,
tensor_parallel_size=1,
gpu_memory_utilization=0.10,
enforce_eager=True)
with llm.deprecate_legacy_api():
yield weakref.proxy(llm)
del llm
cleanup()
def assert_outputs_equal(o1: List[RequestOutput], o2: List[RequestOutput]):
assert [o.outputs for o in o1] == [o.outputs for o in o2]
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize('prompt', PROMPTS)
def test_v1_v2_api_consistency_single_prompt_string(llm: LLM, prompt):
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
with pytest.warns(DeprecationWarning, match="'prompts'"):
v1_output = llm.generate(prompts=prompt,
sampling_params=sampling_params)
v2_output = llm.generate(prompt, sampling_params=sampling_params)
assert_outputs_equal(v1_output, v2_output)
v2_output = llm.generate({"prompt": prompt},
sampling_params=sampling_params)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
@pytest.mark.parametrize('prompt_token_ids', TOKEN_IDS)
def test_v1_v2_api_consistency_single_prompt_tokens(llm: LLM,
prompt_token_ids):
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
v1_output = llm.generate(prompt_token_ids=prompt_token_ids,
sampling_params=sampling_params)
v2_output = llm.generate({"prompt_token_ids": prompt_token_ids},
sampling_params=sampling_params)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
def test_v1_v2_api_consistency_multi_prompt_string(llm: LLM):
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
with pytest.warns(DeprecationWarning, match="'prompts'"):
v1_output = llm.generate(prompts=PROMPTS,
sampling_params=sampling_params)
v2_output = llm.generate(PROMPTS, sampling_params=sampling_params)
assert_outputs_equal(v1_output, v2_output)
v2_output = llm.generate(
[{
"prompt": p
} for p in PROMPTS],
sampling_params=sampling_params,
)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
def test_v1_v2_api_consistency_multi_prompt_tokens(llm: LLM):
sampling_params = SamplingParams(temperature=0.0, top_p=1.0)
with pytest.warns(DeprecationWarning, match="'prompt_token_ids'"):
v1_output = llm.generate(prompt_token_ids=TOKEN_IDS,
sampling_params=sampling_params)
v2_output = llm.generate(
[{
"prompt_token_ids": p
} for p in TOKEN_IDS],
sampling_params=sampling_params,
)
assert_outputs_equal(v1_output, v2_output)
@pytest.mark.skip_global_cleanup
def test_multiple_sampling_params(llm: LLM):
sampling_params = [
SamplingParams(temperature=0.01, top_p=0.95),
SamplingParams(temperature=0.3, top_p=0.95),
SamplingParams(temperature=0.7, top_p=0.95),
SamplingParams(temperature=0.99, top_p=0.95),
]
# Multiple SamplingParams should be matched with each prompt
outputs = llm.generate(PROMPTS, sampling_params=sampling_params)
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.generate(PROMPTS, sampling_params=sampling_params[:3])
# Single SamplingParams should be applied to every prompt
single_sampling_params = SamplingParams(temperature=0.3, top_p=0.95)
outputs = llm.generate(PROMPTS, sampling_params=single_sampling_params)
assert len(PROMPTS) == len(outputs)
# sampling_params is None, default params should be applied
outputs = llm.generate(PROMPTS, sampling_params=None)
assert len(PROMPTS) == len(outputs)
def test_chat():
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
prompt1 = "Explain the concept of entropy."
messages = [
{
"role": "system",
"content": "You are a helpful assistant"
},
{
"role": "user",
"content": prompt1
},
]
outputs = llm.chat(messages)
assert len(outputs) == 1
def test_multi_chat():
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
prompt1 = "Explain the concept of entropy."
prompt2 = "Explain what among us is."
conversation1 = [
{
"role": "system",
"content": "You are a helpful assistant"
},
{
"role": "user",
"content": prompt1
},
]
conversation2 = [
{
"role": "system",
"content": "You are a helpful assistant"
},
{
"role": "user",
"content": prompt2
},
]
messages = [conversation1, conversation2]
outputs = llm.chat(messages)
assert len(outputs) == 2
@pytest.mark.parametrize("image_urls",
[[TEST_IMAGE_URLS[0], TEST_IMAGE_URLS[1]]])
def test_chat_multi_image(image_urls: List[str]):
llm = LLM(
model="microsoft/Phi-3.5-vision-instruct",
dtype="bfloat16",
max_model_len=4096,
max_num_seqs=5,
enforce_eager=True,
trust_remote_code=True,
limit_mm_per_prompt={"image": 2},
)
messages = [{
"role":
"user",
"content": [
*({
"type": "image_url",
"image_url": {
"url": image_url
}
} for image_url in image_urls),
{
"type": "text",
"text": "What's in this image?"
},
],
}]
outputs = llm.chat(messages)
assert len(outputs) >= 0