487 lines
16 KiB
Markdown
487 lines
16 KiB
Markdown
![]() |
(multimodal-inputs)=
|
|||
|
|
|||
|
# Multimodal Inputs
|
|||
|
|
|||
|
This page teaches you how to pass multi-modal inputs to [multi-modal models](#supported-mm-models) in vLLM.
|
|||
|
|
|||
|
```{note}
|
|||
|
We are actively iterating on multi-modal support. See [this RFC](https://github.com/vllm-project/vllm/issues/4194) for upcoming changes,
|
|||
|
and [open an issue on GitHub](https://github.com/vllm-project/vllm/issues/new/choose) if you have any feedback or feature requests.
|
|||
|
```
|
|||
|
|
|||
|
## Offline Inference
|
|||
|
|
|||
|
To input multi-modal data, follow this schema in {class}`vllm.inputs.PromptType`:
|
|||
|
|
|||
|
- `prompt`: The prompt should follow the format that is documented on HuggingFace.
|
|||
|
- `multi_modal_data`: This is a dictionary that follows the schema defined in {class}`vllm.multimodal.MultiModalDataDict`.
|
|||
|
|
|||
|
### Image
|
|||
|
|
|||
|
You can pass a single image to the {code}`'image'` field of the multi-modal dictionary, as shown in the following examples:
|
|||
|
|
|||
|
```python
|
|||
|
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
|||
|
|
|||
|
# Refer to the HuggingFace repo for the correct format to use
|
|||
|
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
|||
|
|
|||
|
# Load the image using PIL.Image
|
|||
|
image = PIL.Image.open(...)
|
|||
|
|
|||
|
# Single prompt inference
|
|||
|
outputs = llm.generate({
|
|||
|
"prompt": prompt,
|
|||
|
"multi_modal_data": {"image": image},
|
|||
|
})
|
|||
|
|
|||
|
for o in outputs:
|
|||
|
generated_text = o.outputs[0].text
|
|||
|
print(generated_text)
|
|||
|
|
|||
|
# Batch inference
|
|||
|
image_1 = PIL.Image.open(...)
|
|||
|
image_2 = PIL.Image.open(...)
|
|||
|
outputs = llm.generate(
|
|||
|
[
|
|||
|
{
|
|||
|
"prompt": "USER: <image>\nWhat is the content of this image?\nASSISTANT:",
|
|||
|
"multi_modal_data": {"image": image_1},
|
|||
|
},
|
|||
|
{
|
|||
|
"prompt": "USER: <image>\nWhat's the color of this image?\nASSISTANT:",
|
|||
|
"multi_modal_data": {"image": image_2},
|
|||
|
}
|
|||
|
]
|
|||
|
)
|
|||
|
|
|||
|
for o in outputs:
|
|||
|
generated_text = o.outputs[0].text
|
|||
|
print(generated_text)
|
|||
|
```
|
|||
|
|
|||
|
A code example can be found in [examples/offline_inference_vision_language.py](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language.py).
|
|||
|
|
|||
|
To substitute multiple images inside the same text prompt, you can pass in a list of images instead:
|
|||
|
|
|||
|
```python
|
|||
|
llm = LLM(
|
|||
|
model="microsoft/Phi-3.5-vision-instruct",
|
|||
|
trust_remote_code=True, # Required to load Phi-3.5-vision
|
|||
|
max_model_len=4096, # Otherwise, it may not fit in smaller GPUs
|
|||
|
limit_mm_per_prompt={"image": 2}, # The maximum number to accept
|
|||
|
)
|
|||
|
|
|||
|
# Refer to the HuggingFace repo for the correct format to use
|
|||
|
prompt = "<|user|>\n<|image_1|>\n<|image_2|>\nWhat is the content of each image?<|end|>\n<|assistant|>\n"
|
|||
|
|
|||
|
# Load the images using PIL.Image
|
|||
|
image1 = PIL.Image.open(...)
|
|||
|
image2 = PIL.Image.open(...)
|
|||
|
|
|||
|
outputs = llm.generate({
|
|||
|
"prompt": prompt,
|
|||
|
"multi_modal_data": {
|
|||
|
"image": [image1, image2]
|
|||
|
},
|
|||
|
})
|
|||
|
|
|||
|
for o in outputs:
|
|||
|
generated_text = o.outputs[0].text
|
|||
|
print(generated_text)
|
|||
|
```
|
|||
|
|
|||
|
A code example can be found in [examples/offline_inference_vision_language_multi_image.py](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language_multi_image.py).
|
|||
|
|
|||
|
Multi-image input can be extended to perform video captioning. We show this with [Qwen2-VL](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct) as it supports videos:
|
|||
|
|
|||
|
```python
|
|||
|
# Specify the maximum number of frames per video to be 4. This can be changed.
|
|||
|
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
|
|||
|
|
|||
|
# Create the request payload.
|
|||
|
video_frames = ... # load your video making sure it only has the number of frames specified earlier.
|
|||
|
message = {
|
|||
|
"role": "user",
|
|||
|
"content": [
|
|||
|
{"type": "text", "text": "Describe this set of frames. Consider the frames to be a part of the same video."},
|
|||
|
],
|
|||
|
}
|
|||
|
for i in range(len(video_frames)):
|
|||
|
base64_image = encode_image(video_frames[i]) # base64 encoding.
|
|||
|
new_image = {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
|
|||
|
message["content"].append(new_image)
|
|||
|
|
|||
|
# Perform inference and log output.
|
|||
|
outputs = llm.chat([message])
|
|||
|
|
|||
|
for o in outputs:
|
|||
|
generated_text = o.outputs[0].text
|
|||
|
print(generated_text)
|
|||
|
```
|
|||
|
|
|||
|
### Video
|
|||
|
|
|||
|
You can pass a list of NumPy arrays directly to the {code}`'video'` field of the multi-modal dictionary
|
|||
|
instead of using multi-image input.
|
|||
|
|
|||
|
Please refer to [examples/offline_inference_vision_language.py](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language.py) for more details.
|
|||
|
|
|||
|
### Audio
|
|||
|
|
|||
|
You can pass a tuple {code}`(array, sampling_rate)` to the {code}`'audio'` field of the multi-modal dictionary.
|
|||
|
|
|||
|
Please refer to [examples/offline_inference_audio_language.py](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_audio_language.py) for more details.
|
|||
|
|
|||
|
### Embedding
|
|||
|
|
|||
|
To input pre-computed embeddings belonging to a data type (i.e. image, video, or audio) directly to the language model,
|
|||
|
pass a tensor of shape {code}`(num_items, feature_size, hidden_size of LM)` to the corresponding field of the multi-modal dictionary.
|
|||
|
|
|||
|
```python
|
|||
|
# Inference with image embeddings as input
|
|||
|
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
|||
|
|
|||
|
# Refer to the HuggingFace repo for the correct format to use
|
|||
|
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
|||
|
|
|||
|
# Embeddings for single image
|
|||
|
# torch.Tensor of shape (1, image_feature_size, hidden_size of LM)
|
|||
|
image_embeds = torch.load(...)
|
|||
|
|
|||
|
outputs = llm.generate({
|
|||
|
"prompt": prompt,
|
|||
|
"multi_modal_data": {"image": image_embeds},
|
|||
|
})
|
|||
|
|
|||
|
for o in outputs:
|
|||
|
generated_text = o.outputs[0].text
|
|||
|
print(generated_text)
|
|||
|
```
|
|||
|
|
|||
|
For Qwen2-VL and MiniCPM-V, we accept additional parameters alongside the embeddings:
|
|||
|
|
|||
|
```python
|
|||
|
# Construct the prompt based on your model
|
|||
|
prompt = ...
|
|||
|
|
|||
|
# Embeddings for multiple images
|
|||
|
# torch.Tensor of shape (num_images, image_feature_size, hidden_size of LM)
|
|||
|
image_embeds = torch.load(...)
|
|||
|
|
|||
|
# Qwen2-VL
|
|||
|
llm = LLM("Qwen/Qwen2-VL-2B-Instruct", limit_mm_per_prompt={"image": 4})
|
|||
|
mm_data = {
|
|||
|
"image": {
|
|||
|
"image_embeds": image_embeds,
|
|||
|
# image_grid_thw is needed to calculate positional encoding.
|
|||
|
"image_grid_thw": torch.load(...), # torch.Tensor of shape (1, 3),
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
# MiniCPM-V
|
|||
|
llm = LLM("openbmb/MiniCPM-V-2_6", trust_remote_code=True, limit_mm_per_prompt={"image": 4})
|
|||
|
mm_data = {
|
|||
|
"image": {
|
|||
|
"image_embeds": image_embeds,
|
|||
|
# image_size_list is needed to calculate details of the sliced image.
|
|||
|
"image_size_list": [image.size for image in images], # list of image sizes
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
outputs = llm.generate({
|
|||
|
"prompt": prompt,
|
|||
|
"multi_modal_data": mm_data,
|
|||
|
})
|
|||
|
|
|||
|
for o in outputs:
|
|||
|
generated_text = o.outputs[0].text
|
|||
|
print(generated_text)
|
|||
|
```
|
|||
|
|
|||
|
## Online Inference
|
|||
|
|
|||
|
Our OpenAI-compatible server accepts multi-modal data via the [Chat Completions API](https://platform.openai.com/docs/api-reference/chat).
|
|||
|
|
|||
|
```{important}
|
|||
|
A chat template is **required** to use Chat Completions API.
|
|||
|
|
|||
|
Although most models come with a chat template, for others you have to define one yourself.
|
|||
|
The chat template can be inferred based on the documentation on the model's HuggingFace repo.
|
|||
|
For example, LLaVA-1.5 (`llava-hf/llava-1.5-7b-hf`) requires a chat template that can be found [here](https://github.com/vllm-project/vllm/blob/main/examples/template_llava.jinja).
|
|||
|
```
|
|||
|
|
|||
|
### Image
|
|||
|
|
|||
|
Image input is supported according to [OpenAI Vision API](https://platform.openai.com/docs/guides/vision).
|
|||
|
Here is a simple example using Phi-3.5-Vision.
|
|||
|
|
|||
|
First, launch the OpenAI-compatible server:
|
|||
|
|
|||
|
```bash
|
|||
|
vllm serve microsoft/Phi-3.5-vision-instruct --task generate \
|
|||
|
--trust-remote-code --max-model-len 4096 --limit-mm-per-prompt image=2
|
|||
|
```
|
|||
|
|
|||
|
Then, you can use the OpenAI client as follows:
|
|||
|
|
|||
|
```python
|
|||
|
from openai import OpenAI
|
|||
|
|
|||
|
openai_api_key = "EMPTY"
|
|||
|
openai_api_base = "http://localhost:8000/v1"
|
|||
|
|
|||
|
client = OpenAI(
|
|||
|
api_key=openai_api_key,
|
|||
|
base_url=openai_api_base,
|
|||
|
)
|
|||
|
|
|||
|
# Single-image input inference
|
|||
|
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|||
|
|
|||
|
chat_response = client.chat.completions.create(
|
|||
|
model="microsoft/Phi-3.5-vision-instruct",
|
|||
|
messages=[{
|
|||
|
"role": "user",
|
|||
|
"content": [
|
|||
|
# NOTE: The prompt formatting with the image token `<image>` is not needed
|
|||
|
# since the prompt will be processed automatically by the API server.
|
|||
|
{"type": "text", "text": "What’s in this image?"},
|
|||
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|||
|
],
|
|||
|
}],
|
|||
|
)
|
|||
|
print("Chat completion output:", chat_response.choices[0].message.content)
|
|||
|
|
|||
|
# Multi-image input inference
|
|||
|
image_url_duck = "https://upload.wikimedia.org/wikipedia/commons/d/da/2015_Kaczka_krzy%C5%BCowka_w_wodzie_%28samiec%29.jpg"
|
|||
|
image_url_lion = "https://upload.wikimedia.org/wikipedia/commons/7/77/002_The_lion_king_Snyggve_in_the_Serengeti_National_Park_Photo_by_Giles_Laurent.jpg"
|
|||
|
|
|||
|
chat_response = client.chat.completions.create(
|
|||
|
model="microsoft/Phi-3.5-vision-instruct",
|
|||
|
messages=[{
|
|||
|
"role": "user",
|
|||
|
"content": [
|
|||
|
{"type": "text", "text": "What are the animals in these images?"},
|
|||
|
{"type": "image_url", "image_url": {"url": image_url_duck}},
|
|||
|
{"type": "image_url", "image_url": {"url": image_url_lion}},
|
|||
|
],
|
|||
|
}],
|
|||
|
)
|
|||
|
print("Chat completion output:", chat_response.choices[0].message.content)
|
|||
|
```
|
|||
|
|
|||
|
A full code example can be found in [examples/openai_chat_completion_client_for_multimodal.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_client_for_multimodal.py).
|
|||
|
|
|||
|
```{tip}
|
|||
|
Loading from local file paths is also supported on vLLM: You can specify the allowed local media path via `--allowed-local-media-path` when launching the API server/engine,
|
|||
|
and pass the file path as `url` in the API request.
|
|||
|
```
|
|||
|
|
|||
|
```{tip}
|
|||
|
There is no need to place image placeholders in the text content of the API request - they are already represented by the image content.
|
|||
|
In fact, you can place image placeholders in the middle of the text by interleaving text and image content.
|
|||
|
```
|
|||
|
|
|||
|
````{note}
|
|||
|
By default, the timeout for fetching images through HTTP URL is `5` seconds.
|
|||
|
You can override this by setting the environment variable:
|
|||
|
|
|||
|
```console
|
|||
|
$ export VLLM_IMAGE_FETCH_TIMEOUT=<timeout>
|
|||
|
```
|
|||
|
````
|
|||
|
|
|||
|
### Video
|
|||
|
|
|||
|
Instead of {code}`image_url`, you can pass a video file via {code}`video_url`.
|
|||
|
|
|||
|
You can use [these tests](https://github.com/vllm-project/vllm/blob/main/tests/entrypoints/openai/test_video.py) as reference.
|
|||
|
|
|||
|
````{note}
|
|||
|
By default, the timeout for fetching videos through HTTP URL url is `30` seconds.
|
|||
|
You can override this by setting the environment variable:
|
|||
|
|
|||
|
```console
|
|||
|
$ export VLLM_VIDEO_FETCH_TIMEOUT=<timeout>
|
|||
|
```
|
|||
|
````
|
|||
|
|
|||
|
### Audio
|
|||
|
|
|||
|
Audio input is supported according to [OpenAI Audio API](https://platform.openai.com/docs/guides/audio?audio-generation-quickstart-example=audio-in).
|
|||
|
Here is a simple example using Ultravox-v0.3.
|
|||
|
|
|||
|
First, launch the OpenAI-compatible server:
|
|||
|
|
|||
|
```bash
|
|||
|
vllm serve fixie-ai/ultravox-v0_3
|
|||
|
```
|
|||
|
|
|||
|
Then, you can use the OpenAI client as follows:
|
|||
|
|
|||
|
```python
|
|||
|
import base64
|
|||
|
import requests
|
|||
|
from openai import OpenAI
|
|||
|
from vllm.assets.audio import AudioAsset
|
|||
|
|
|||
|
def encode_base64_content_from_url(content_url: str) -> str:
|
|||
|
"""Encode a content retrieved from a remote url to base64 format."""
|
|||
|
|
|||
|
with requests.get(content_url) as response:
|
|||
|
response.raise_for_status()
|
|||
|
result = base64.b64encode(response.content).decode('utf-8')
|
|||
|
|
|||
|
return result
|
|||
|
|
|||
|
openai_api_key = "EMPTY"
|
|||
|
openai_api_base = "http://localhost:8000/v1"
|
|||
|
|
|||
|
client = OpenAI(
|
|||
|
api_key=openai_api_key,
|
|||
|
base_url=openai_api_base,
|
|||
|
)
|
|||
|
|
|||
|
# Any format supported by librosa is supported
|
|||
|
audio_url = AudioAsset("winning_call").url
|
|||
|
audio_base64 = encode_base64_content_from_url(audio_url)
|
|||
|
|
|||
|
chat_completion_from_base64 = client.chat.completions.create(
|
|||
|
messages=[{
|
|||
|
"role": "user",
|
|||
|
"content": [
|
|||
|
{
|
|||
|
"type": "text",
|
|||
|
"text": "What's in this audio?"
|
|||
|
},
|
|||
|
{
|
|||
|
"type": "input_audio",
|
|||
|
"input_audio": {
|
|||
|
"data": audio_base64,
|
|||
|
"format": "wav"
|
|||
|
},
|
|||
|
},
|
|||
|
],
|
|||
|
}],
|
|||
|
model=model,
|
|||
|
max_completion_tokens=64,
|
|||
|
)
|
|||
|
|
|||
|
result = chat_completion_from_base64.choices[0].message.content
|
|||
|
print("Chat completion output from input audio:", result)
|
|||
|
```
|
|||
|
|
|||
|
Alternatively, you can pass {code}`audio_url`, which is the audio counterpart of {code}`image_url` for image input:
|
|||
|
|
|||
|
```python
|
|||
|
chat_completion_from_url = client.chat.completions.create(
|
|||
|
messages=[{
|
|||
|
"role": "user",
|
|||
|
"content": [
|
|||
|
{
|
|||
|
"type": "text",
|
|||
|
"text": "What's in this audio?"
|
|||
|
},
|
|||
|
{
|
|||
|
"type": "audio_url",
|
|||
|
"audio_url": {
|
|||
|
"url": audio_url
|
|||
|
},
|
|||
|
},
|
|||
|
],
|
|||
|
}],
|
|||
|
model=model,
|
|||
|
max_completion_tokens=64,
|
|||
|
)
|
|||
|
|
|||
|
result = chat_completion_from_url.choices[0].message.content
|
|||
|
print("Chat completion output from audio url:", result)
|
|||
|
```
|
|||
|
|
|||
|
A full code example can be found in [examples/openai_chat_completion_client_for_multimodal.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_completion_client_for_multimodal.py).
|
|||
|
|
|||
|
````{note}
|
|||
|
By default, the timeout for fetching audios through HTTP URL is `10` seconds.
|
|||
|
You can override this by setting the environment variable:
|
|||
|
|
|||
|
```console
|
|||
|
$ export VLLM_AUDIO_FETCH_TIMEOUT=<timeout>
|
|||
|
```
|
|||
|
````
|
|||
|
|
|||
|
### Embedding
|
|||
|
|
|||
|
vLLM's Embeddings API is a superset of OpenAI's [Embeddings API](https://platform.openai.com/docs/api-reference/embeddings),
|
|||
|
where a list of chat `messages` can be passed instead of batched `inputs`. This enables multi-modal inputs to be passed to embedding models.
|
|||
|
|
|||
|
```{tip}
|
|||
|
The schema of `messages` is exactly the same as in Chat Completions API.
|
|||
|
You can refer to the above tutorials for more details on how to pass each type of multi-modal data.
|
|||
|
```
|
|||
|
|
|||
|
Usually, embedding models do not expect chat-based input, so we need to use a custom chat template to format the text and images.
|
|||
|
Refer to the examples below for illustration.
|
|||
|
|
|||
|
Here is an end-to-end example using VLM2Vec. To serve the model:
|
|||
|
|
|||
|
```bash
|
|||
|
vllm serve TIGER-Lab/VLM2Vec-Full --task embed \
|
|||
|
--trust-remote-code --max-model-len 4096 --chat-template examples/template_vlm2vec.jinja
|
|||
|
```
|
|||
|
|
|||
|
```{important}
|
|||
|
Since VLM2Vec has the same model architecture as Phi-3.5-Vision, we have to explicitly pass `--task embed`
|
|||
|
to run this model in embedding mode instead of text generation mode.
|
|||
|
|
|||
|
The custom chat template is completely different from the original one for this model,
|
|||
|
and can be found [here](https://github.com/vllm-project/vllm/blob/main/examples/template_vlm2vec.jinja).
|
|||
|
```
|
|||
|
|
|||
|
Since the request schema is not defined by OpenAI client, we post a request to the server using the lower-level `requests` library:
|
|||
|
|
|||
|
```python
|
|||
|
import requests
|
|||
|
|
|||
|
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|||
|
|
|||
|
response = requests.post(
|
|||
|
"http://localhost:8000/v1/embeddings",
|
|||
|
json={
|
|||
|
"model": "TIGER-Lab/VLM2Vec-Full",
|
|||
|
"messages": [{
|
|||
|
"role": "user",
|
|||
|
"content": [
|
|||
|
{"type": "image_url", "image_url": {"url": image_url}},
|
|||
|
{"type": "text", "text": "Represent the given image."},
|
|||
|
],
|
|||
|
}],
|
|||
|
"encoding_format": "float",
|
|||
|
},
|
|||
|
)
|
|||
|
response.raise_for_status()
|
|||
|
response_json = response.json()
|
|||
|
print("Embedding output:", response_json["data"][0]["embedding"])
|
|||
|
```
|
|||
|
|
|||
|
Below is another example, this time using the `MrLight/dse-qwen2-2b-mrl-v1` model.
|
|||
|
|
|||
|
```bash
|
|||
|
vllm serve MrLight/dse-qwen2-2b-mrl-v1 --task embed \
|
|||
|
--trust-remote-code --max-model-len 8192 --chat-template examples/template_dse_qwen2_vl.jinja
|
|||
|
```
|
|||
|
|
|||
|
```{important}
|
|||
|
Like with VLM2Vec, we have to explicitly pass `--task embed`.
|
|||
|
|
|||
|
Additionally, `MrLight/dse-qwen2-2b-mrl-v1` requires an EOS token for embeddings, which is handled
|
|||
|
by [this custom chat template](https://github.com/vllm-project/vllm/blob/main/examples/template_dse_qwen2_vl.jinja).
|
|||
|
```
|
|||
|
|
|||
|
```{important}
|
|||
|
Also important, `MrLight/dse-qwen2-2b-mrl-v1` requires a placeholder image of the minimum image size for text query embeddings. See the full code
|
|||
|
example below for details.
|
|||
|
```
|
|||
|
|
|||
|
A full code example can be found in [examples/openai_chat_embedding_client_for_multimodal.py](https://github.com/vllm-project/vllm/blob/main/examples/openai_chat_embedding_client_for_multimodal.py).
|