331 lines
13 KiB
Python
Raw Normal View History

2023-02-09 11:25:37 +00:00
"""1D OPT model compatible with HuggingFace weights."""
2023-03-22 04:45:42 +08:00
import os
import glob
import filelock
from tqdm import tqdm
2023-02-23 09:31:55 +00:00
from typing import Dict, List, Optional, Tuple
2023-03-22 04:45:42 +08:00
import numpy as np
2023-02-09 11:25:37 +00:00
import torch
from torch import nn
from transformers import OPTConfig
2023-03-22 04:45:42 +08:00
from huggingface_hub import snapshot_download
2023-02-09 11:25:37 +00:00
2023-02-23 09:31:55 +00:00
from cacheflow.models import InputMetadata
from cacheflow.models.attention import OPTCacheFlowAttention
from cacheflow.models.sample import Sampler
2023-03-22 04:45:42 +08:00
from cacheflow.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from cacheflow.parallel_utils.tensor_parallel import (VocabParallelEmbedding,
ColumnParallelLinear,
RowParallelLinear)
from cacheflow.sequence import SequenceOutputs
2023-02-23 09:31:55 +00:00
KVCache = Tuple[torch.Tensor, torch.Tensor]
2023-02-09 11:25:37 +00:00
class OPTLearnedPositionalEmbedding(nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, positions: torch.LongTensor):
return super().forward(positions + self.offset)
class OPTAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
bias: bool = True,
) -> None:
super().__init__()
self.embed_dim = embed_dim
2023-03-22 04:45:42 +08:00
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
total_num_heads = num_heads
assert num_heads % tensor_model_parallel_world_size == 0
self.num_heads = total_num_heads // tensor_model_parallel_world_size
self.head_dim = embed_dim // total_num_heads
self.scaling = self.head_dim ** -0.5
2023-02-09 11:25:37 +00:00
2023-04-02 15:23:29 +08:00
self.qkv_proj = ColumnParallelLinear(embed_dim, 3 * embed_dim, bias=bias,
gather_output=False,
perform_initialization=False)
2023-03-22 04:45:42 +08:00
self.out_proj = RowParallelLinear(embed_dim, embed_dim, bias=bias,
input_is_parallel=True,
perform_initialization=False)
2023-02-23 09:31:55 +00:00
self.attn = OPTCacheFlowAttention(scale=self.scaling)
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
2023-04-02 15:23:29 +08:00
qkv, _ = self.qkv_proj(hidden_states)
2023-04-02 00:30:17 -07:00
q, k, v = qkv.chunk(chunks=3, dim=-1)
2023-02-23 09:31:55 +00:00
key_cache, value_cache = kv_cache
attn_output = self.attn(
q, k, v, key_cache, value_cache, input_metadata, cache_event)
2023-03-22 04:45:42 +08:00
output, _ = self.out_proj(attn_output)
2023-02-09 11:25:37 +00:00
return output
2023-04-02 00:30:17 -07:00
2023-02-09 11:25:37 +00:00
class OPTDecoderLayer(nn.Module):
def __init__(self, config: OPTConfig):
super().__init__()
2023-03-22 04:45:42 +08:00
self.config = config
2023-02-09 11:25:37 +00:00
self.embed_dim = config.hidden_size
self.self_attn = OPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
bias=config.enable_bias,
)
self.do_layer_norm_before = config.do_layer_norm_before
assert config.activation_function == 'relu'
self.activation_fn = nn.ReLU()
self.self_attn_layer_norm = nn.LayerNorm(
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
2023-03-22 04:45:42 +08:00
self.fc1 = ColumnParallelLinear(self.embed_dim, config.ffn_dim,
bias=config.enable_bias,
gather_output=False,
perform_initialization=False)
self.fc2 = RowParallelLinear(config.ffn_dim, self.embed_dim,
bias=config.enable_bias,
input_is_parallel=True,
perform_initialization=False)
self.final_layer_norm = nn.LayerNorm(
self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
2023-02-09 11:25:37 +00:00
2023-02-23 09:31:55 +00:00
def forward(
self,
hidden_states: torch.Tensor,
kv_cache: KVCache,
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor:
2023-02-09 11:25:37 +00:00
# Self Attention
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
2023-02-23 09:31:55 +00:00
hidden_states = self.self_attn(
hidden_states=hidden_states,
kv_cache=kv_cache,
input_metadata=input_metadata,
cache_event=cache_event)
2023-02-09 11:25:37 +00:00
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
2023-03-22 04:45:42 +08:00
hidden_states, _ = self.fc1(hidden_states)
2023-02-09 11:25:37 +00:00
hidden_states = self.activation_fn(hidden_states)
2023-03-22 04:45:42 +08:00
hidden_states, _ = self.fc2(hidden_states)
2023-02-09 11:25:37 +00:00
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states
2023-03-22 04:45:42 +08:00
class OPTDecoder(nn.Module):
2023-02-09 11:25:37 +00:00
def __init__(self, config: OPTConfig):
2023-03-22 04:45:42 +08:00
super().__init__()
self.config = config
2023-02-09 11:25:37 +00:00
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.vocab_size = config.vocab_size
2023-03-22 04:45:42 +08:00
self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
config.word_embed_proj_dim,
perform_initialization=False)
# Positional embeddings are replicated (not sharded).
self.embed_positions = OPTLearnedPositionalEmbedding(
config.max_position_embeddings, config.hidden_size)
2023-02-09 11:25:37 +00:00
2023-03-22 04:45:42 +08:00
# Project out & in will be replicated if they exist.
2023-02-09 11:25:37 +00:00
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
else:
self.project_out = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
else:
self.project_in = None
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = nn.LayerNorm(
config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
)
else:
self.final_layer_norm = None
self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
2023-02-23 09:31:55 +00:00
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
2023-02-09 11:25:37 +00:00
) -> torch.Tensor:
inputs_embeds = self.embed_tokens(input_ids)
pos_embeds = self.embed_positions(positions)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
2023-02-23 09:31:55 +00:00
for i in range(len(self.layers)):
if cache_events is None:
cache_event = None
else:
cache_event = cache_events[i]
layer = self.layers[i]
hidden_states = layer(
hidden_states, kv_caches[i], input_metadata, cache_event)
2023-02-09 11:25:37 +00:00
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
return hidden_states
2023-03-22 04:45:42 +08:00
class OPTModel(nn.Module):
2023-02-09 11:25:37 +00:00
def __init__(self, config: OPTConfig):
2023-03-22 04:45:42 +08:00
super().__init__()
2023-02-09 11:25:37 +00:00
self.decoder = OPTDecoder(config)
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
2023-02-23 09:31:55 +00:00
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
2023-02-09 11:25:37 +00:00
) -> torch.Tensor:
2023-02-23 09:31:55 +00:00
return self.decoder(
input_ids, positions, kv_caches, input_metadata, cache_events)
2023-02-09 11:25:37 +00:00
2023-03-22 04:45:42 +08:00
class OPTForCausalLM(nn.Module):
2023-02-09 11:25:37 +00:00
def __init__(self, config):
2023-03-22 04:45:42 +08:00
super().__init__()
self.config = config
2023-02-09 11:25:37 +00:00
self.model = OPTModel(config)
2023-03-22 04:45:42 +08:00
# TODO(zhuohan): create a new weight after implementing pipeline
# parallelism
self.lm_head_weight = self.model.decoder.embed_tokens.weight
2023-02-23 20:30:12 +00:00
self.sampler = Sampler()
2023-02-09 11:25:37 +00:00
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.LongTensor,
2023-02-23 09:31:55 +00:00
kv_caches: List[KVCache],
input_metadata: InputMetadata,
cache_events: Optional[List[torch.cuda.Event]],
) -> Dict[int, SequenceOutputs]:
2023-02-23 09:31:55 +00:00
hidden_states = self.model(
input_ids, positions, kv_caches, input_metadata, cache_events)
2023-02-23 20:30:12 +00:00
next_tokens = self.sampler(
2023-03-22 04:45:42 +08:00
self.lm_head_weight, hidden_states, input_metadata)
2023-02-23 09:31:55 +00:00
return next_tokens
2023-03-22 04:45:42 +08:00
2023-04-02 15:23:29 +08:00
_column_parallel_weights = ["embed_tokens.weight", "fc1.weight", "fc1.bias"]
2023-03-22 04:45:42 +08:00
_row_parallel_weights = ["out_proj.weight", "fc2.weight"]
def load_weights(self, weights_path: str):
tensor_model_parallel_rank = get_tensor_model_parallel_rank()
state_dict = self.state_dict()
for name, param in state_dict.items():
if "lm_head_weight" in name:
continue
2023-04-02 15:23:29 +08:00
if "qkv_proj" in name:
shard_size = param.shape[0] // 3
weights_to_concat = []
for weight_name in ["q_proj", "k_proj", "v_proj"]:
weight = np.load(os.path.join(
weights_path, name.replace("qkv_proj", weight_name)))
weights_to_concat.append(weight[
2023-03-22 04:45:42 +08:00
shard_size * tensor_model_parallel_rank
2023-04-02 15:23:29 +08:00
:shard_size * (tensor_model_parallel_rank + 1)])
loaded_weight = torch.from_numpy(
np.concatenate(weights_to_concat, axis=0))
else:
loaded_weight = torch.from_numpy(
np.load(os.path.join(weights_path, name)))
for p in self._column_parallel_weights:
if p in name:
shard_size = param.shape[0]
loaded_weight = loaded_weight[
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
break
for p in self._row_parallel_weights:
if p in name:
shard_size = param.shape[1]
loaded_weight = loaded_weight[
:,
shard_size * tensor_model_parallel_rank
:shard_size * (tensor_model_parallel_rank + 1)]
break
2023-03-22 04:45:42 +08:00
assert param.shape == loaded_weight.shape
param.data.copy_(loaded_weight)
@staticmethod
def get_weights(model_name: str, path: str):
2023-03-22 04:45:42 +08:00
path = os.path.join(path, f"{model_name}-np")
path = os.path.abspath(os.path.expanduser(path))
os.makedirs(path, exist_ok=True)
lock_path = os.path.join(path, "file_lock")
lock = filelock.FileLock(lock_path)
with lock:
test_weight_path = os.path.join(
path, "model.decoder.embed_positions.weight")
if os.path.exists(test_weight_path):
return path
folder = snapshot_download(model_name, allow_patterns="*.bin",
cache_dir=os.path.join(path, "cache"))
bin_files = glob.glob(os.path.join(folder, "*.bin"))
for bin_file in tqdm(bin_files, desc="Convert format"):
state = torch.load(bin_file, map_location="cpu")
2023-03-22 04:45:42 +08:00
for name, param in tqdm(state.items(), leave=False):
if name.startswith("decoder."):
name = "model." + name
param_path = os.path.join(path, name)
with open(param_path, "wb") as f:
np.save(f, param.cpu().detach().numpy())
return path
def initialize_dummy_weights(self) -> None:
for param in self.state_dict().values():
param.data.uniform_(-1e-3, 1e-3)