* Dynamic ``image_input_shape`` is not supported: the input image will be resized to the static ``image_input_shape``. This means our LLaVA-NeXT output may not exactly match the huggingface implementation.
We are continuously improving user & developer experience for VLMs. Please `open an issue on GitHub <https://github.com/vllm-project/vllm/issues/new/choose>`_ if you have any feedback or feature requests.
We will remove the need to format image tokens in a future release. Afterwards, the input text will follow the same format as that for the original HuggingFace model.
You can serve vision language models with vLLM's HTTP server that is compatible with `OpenAI Vision API <https://platform.openai.com/docs/guides/vision>`_.
..note::
Currently, vLLM supports only **single**``image_url`` input per ``messages``. Support for multi-image inputs will be
added in the future.
Below is an example on how to launch the same ``llava-hf/llava-1.5-7b-hf`` with vLLM API server.
..important::
Since OpenAI Vision API is based on `Chat <https://platform.openai.com/docs/api-reference/chat>`_ API, a chat template
is **required** to launch the API server if the model's tokenizer does not come with one. In this example, we use the
HuggingFace Llava chat template that you can find in the example folder `here <https://github.com/vllm-project/vllm/blob/main/examples/template_llava.jinja>`_.
A full code example can be found in `examples/openai_vision_api_client.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_vision_api_client.py>`_.