vllm/tests/spec_decode/e2e/conftest.py

246 lines
8.5 KiB
Python
Raw Normal View History

import asyncio
from itertools import cycle
from typing import List, Optional, Tuple, Union
import pytest
import ray
from tests.conftest import cleanup
from vllm import LLM
from vllm.engine.arg_utils import AsyncEngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.lora.request import LoRARequest
from vllm.model_executor.utils import set_random_seed
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import MultiModalData
from vllm.usage.usage_lib import UsageContext
from vllm.utils import Counter, random_uuid
class AsyncLLM:
"""AsyncLLM
Note: Current LLM class in vllm don't support async mode, for test purpose,
we implement async one in here. Maybe we could move to
vllm/entrypoints/llm.py in future.
Below AsyncLLM is directly borrow from vllm/entrypoints/llm.py with changes
to make to work in async mode.
"""
def __init__(
self,
model: str,
tokenizer: Optional[str] = None,
tokenizer_mode: str = "auto",
skip_tokenizer_init: bool = False,
trust_remote_code: bool = False,
tensor_parallel_size: int = 1,
dtype: str = "auto",
quantization: Optional[str] = None,
revision: Optional[str] = None,
tokenizer_revision: Optional[str] = None,
seed: int = 0,
gpu_memory_utilization: float = 0.9,
swap_space: int = 4,
enforce_eager: bool = False,
max_seq_len_to_capture: int = 8192,
disable_custom_all_reduce: bool = False,
**kwargs,
) -> None:
if "disable_log_stats" not in kwargs:
kwargs["disable_log_stats"] = True
self.engine_args = AsyncEngineArgs(
model=model,
tokenizer=tokenizer,
tokenizer_mode=tokenizer_mode,
skip_tokenizer_init=skip_tokenizer_init,
trust_remote_code=trust_remote_code,
tensor_parallel_size=tensor_parallel_size,
dtype=dtype,
quantization=quantization,
revision=revision,
tokenizer_revision=tokenizer_revision,
seed=seed,
gpu_memory_utilization=gpu_memory_utilization,
swap_space=swap_space,
enforce_eager=enforce_eager,
max_seq_len_to_capture=max_seq_len_to_capture,
engine_use_ray=True,
disable_custom_all_reduce=disable_custom_all_reduce,
**kwargs,
)
self.request_counter = Counter()
def generate(
self,
prompts: Optional[Union[str, List[str]]] = None,
sampling_params: Optional[Union[SamplingParams,
List[SamplingParams]]] = None,
prompt_token_ids: Optional[List[List[int]]] = None,
use_tqdm: bool = True,
lora_request: Optional[LoRARequest] = None,
multi_modal_data: Optional[MultiModalData] = None,
) -> List[RequestOutput]:
llm_engine = AsyncLLMEngine.from_engine_args(
self.engine_args, usage_context=UsageContext.LLM_CLASS)
if prompts is None:
raise ValueError("prompts must be provided.")
if isinstance(prompts, str):
# Convert a single prompt to a list.
prompts = [prompts]
if prompts is not None:
num_requests = len(prompts)
if sampling_params is None:
# Use default sampling params.
sampling_params = SamplingParams()
elif isinstance(sampling_params,
list) and len(sampling_params) != num_requests:
raise ValueError("The lengths of prompts and "
"sampling_params must be the same.")
async def get_output(prompt, sampling_param) -> str:
request_id = random_uuid()
results_generator = llm_engine.generate(prompt, sampling_param,
request_id)
final_output = None
async for request_output in results_generator:
final_output = request_output
return final_output
outputs = []
try:
for i in range(num_requests):
prompt = prompts[i] if prompts is not None else None
res = asyncio.run(get_output(prompt, sampling_params))
outputs.append(res)
finally:
ray.shutdown()
return outputs
@pytest.fixture
def baseline_llm_generator(request, common_llm_kwargs,
per_test_common_llm_kwargs, baseline_llm_kwargs,
seed):
return create_llm_generator("baseline", request, common_llm_kwargs,
per_test_common_llm_kwargs,
baseline_llm_kwargs, seed)
@pytest.fixture
def test_llm_generator(request, common_llm_kwargs, per_test_common_llm_kwargs,
test_llm_kwargs, seed):
return create_llm_generator("test", request, common_llm_kwargs,
per_test_common_llm_kwargs, test_llm_kwargs,
seed)
def create_llm_generator(baseline_or_test, request, common_llm_kwargs,
per_test_common_llm_kwargs, distinct_llm_kwargs,
seed):
kwargs = {
**common_llm_kwargs,
**per_test_common_llm_kwargs,
**distinct_llm_kwargs,
}
test_name = request.node.name
def generator_inner():
print(f'Creating {baseline_or_test=} LLM for {test_name=}. {kwargs=}')
use_async = False
if "use_async" in kwargs:
use_async = kwargs.pop("use_async")
llm = AsyncLLM(**kwargs) if use_async else LLM(**kwargs)
set_random_seed(seed)
yield llm
del llm
cleanup()
def generator_outer():
for llm in generator_inner():
yield llm
del llm
return generator_outer
def get_output_from_llm_generator(
llm_generator, prompts,
sampling_params) -> Tuple[List[str], List[List[int]]]:
tokens = []
token_ids = []
for llm in llm_generator():
outputs = llm.generate(prompts, sampling_params, use_tqdm=True)
token_ids = [output.outputs[0].token_ids for output in outputs]
tokens = [output.outputs[0].text for output in outputs]
del llm
return tokens, token_ids
def run_greedy_equality_correctness_test(baseline_llm_generator,
test_llm_generator,
batch_size,
max_output_len,
force_output_len: bool,
print_tokens: bool = False):
"""Helper method that compares the outputs of both the baseline LLM and
the test LLM. It asserts greedy equality, e.g. that the outputs are exactly
the same when temperature is zero.
"""
temperature = 0.0
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
"San Francisco is know for its",
"Facebook was created in 2004 by",
"Curious George is a",
"Python 3.11 brings improvements to its",
]
prompts = [prompt for prompt, _ in zip(cycle(prompts), range(batch_size))]
# If the test requires that we generated max_output_len tokens, then set the
# sampling params to ignore eos token.
ignore_eos = force_output_len
sampling_params = SamplingParams(
max_tokens=max_output_len,
ignore_eos=ignore_eos,
temperature=temperature,
)
spec_batch_tokens, spec_batch_token_ids = get_output_from_llm_generator(
test_llm_generator, prompts, sampling_params)
(baseline_batch_tokens,
baseline_batch_token_ids) = get_output_from_llm_generator(
baseline_llm_generator, prompts, sampling_params)
assert len(baseline_batch_token_ids) == len(prompts)
assert len(spec_batch_token_ids) == len(prompts)
for i, (baseline_token_ids, baseline_tokens, spec_token_ids,
spec_tokens) in enumerate(
zip(baseline_batch_token_ids, baseline_batch_tokens,
spec_batch_token_ids, spec_batch_tokens)):
if print_tokens:
print(f'{i=} {baseline_tokens=}')
print(f'{i=} {spec_tokens=}')
print(f'{i=} {baseline_token_ids=}')
print(f'{i=} {spec_token_ids=}')
assert baseline_token_ids == spec_token_ids