2024-08-29 01:06:52 +03:00
|
|
|
from typing import Optional
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
2024-09-25 10:35:52 -04:00
|
|
|
from tests.kernels.utils import opcheck
|
|
|
|
from vllm import _custom_ops as ops # noqa: F401
|
2024-08-29 01:06:52 +03:00
|
|
|
from vllm.model_executor.layers.mamba.ops.causal_conv1d import (
|
|
|
|
causal_conv1d_fn, causal_conv1d_update)
|
2024-09-18 18:38:11 +08:00
|
|
|
from vllm.utils import seed_everything
|
2024-08-29 01:06:52 +03:00
|
|
|
|
|
|
|
|
|
|
|
def causal_conv1d_ref(
|
|
|
|
x: torch.Tensor,
|
|
|
|
weight: torch.Tensor,
|
|
|
|
bias: Optional[torch.Tensor] = None,
|
|
|
|
initial_states: Optional[torch.Tensor] = None,
|
|
|
|
return_final_states: bool = False,
|
|
|
|
final_states_out: Optional[torch.Tensor] = None,
|
|
|
|
activation: Optional[str] = "silu",
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
x: (batch, dim, seqlen)
|
|
|
|
weight: (dim, width)
|
|
|
|
bias: (dim,)
|
|
|
|
initial_states: (batch, dim, width - 1)
|
|
|
|
final_states_out: (batch, dim, width - 1)
|
|
|
|
|
|
|
|
out: (batch, dim, seqlen)
|
|
|
|
"""
|
|
|
|
if activation not in [None, "silu", "swish"]:
|
|
|
|
raise NotImplementedError("activation must be None, silu, or swish")
|
|
|
|
dtype_in = x.dtype
|
|
|
|
x = x.to(weight.dtype)
|
|
|
|
seqlen = x.shape[-1]
|
|
|
|
dim, width = weight.shape
|
|
|
|
if initial_states is None:
|
|
|
|
out = F.conv1d(x,
|
|
|
|
weight.unsqueeze(1),
|
|
|
|
bias,
|
|
|
|
padding=width - 1,
|
|
|
|
groups=dim)
|
|
|
|
else:
|
|
|
|
x = torch.cat([initial_states, x], dim=-1)
|
|
|
|
out = F.conv1d(x, weight.unsqueeze(1), bias, padding=0, groups=dim)
|
|
|
|
out = out[..., :seqlen]
|
|
|
|
if return_final_states:
|
|
|
|
final_states = F.pad(x, (width - 1 - x.shape[-1], 0)).to(
|
|
|
|
dtype_in) # (batch, dim, width - 1)
|
|
|
|
if final_states_out is not None:
|
|
|
|
final_states_out.copy_(final_states)
|
|
|
|
else:
|
|
|
|
final_states_out = final_states
|
|
|
|
out = (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
|
|
|
return (out, None) if not return_final_states else (out, final_states_out)
|
|
|
|
|
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
def causal_conv1d_update_ref(x,
|
|
|
|
conv_state,
|
|
|
|
weight,
|
|
|
|
bias=None,
|
|
|
|
activation=None,
|
|
|
|
cache_seqlens=None):
|
2024-08-29 01:06:52 +03:00
|
|
|
"""
|
2024-09-30 00:35:58 +03:00
|
|
|
x: (batch, dim) or (batch, dim, seqlen)
|
|
|
|
conv_state: (batch, dim, state_len), where state_len >= width - 1
|
2024-08-29 01:06:52 +03:00
|
|
|
weight: (dim, width)
|
|
|
|
bias: (dim,)
|
2024-09-30 00:35:58 +03:00
|
|
|
cache_seqlens: (batch,), dtype int32.
|
|
|
|
If not None, the conv_state is treated as a circular buffer.
|
|
|
|
The conv_state will be updated by copying x to the
|
|
|
|
conv_state starting at the index
|
|
|
|
@cache_seqlens % state_len before performing the convolution.
|
2024-08-29 01:06:52 +03:00
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
out: (batch, dim) or (batch, dim, seqlen)
|
2024-08-29 01:06:52 +03:00
|
|
|
"""
|
|
|
|
if activation not in [None, "silu", "swish"]:
|
|
|
|
raise NotImplementedError("activation must be None, silu, or swish")
|
|
|
|
dtype_in = x.dtype
|
2024-09-30 00:35:58 +03:00
|
|
|
unsqueeze = x.dim() == 2
|
|
|
|
if unsqueeze:
|
|
|
|
x = x.unsqueeze(-1)
|
|
|
|
batch, dim, seqlen = x.shape
|
2024-08-29 01:06:52 +03:00
|
|
|
width = weight.shape[1]
|
2024-09-30 00:35:58 +03:00
|
|
|
state_len = conv_state.shape[-1]
|
|
|
|
assert conv_state.shape == (batch, dim, state_len)
|
2024-08-29 01:06:52 +03:00
|
|
|
assert weight.shape == (dim, width)
|
2024-09-30 00:35:58 +03:00
|
|
|
if cache_seqlens is None:
|
|
|
|
x_new = torch.cat([conv_state, x], dim=-1).to(
|
|
|
|
weight.dtype) # (batch, dim, state_len + seqlen)
|
|
|
|
conv_state.copy_(x_new[:, :, -state_len:])
|
|
|
|
else:
|
|
|
|
width_idx = torch.arange(
|
|
|
|
-(width - 1), 0, dtype=torch.long,
|
|
|
|
device=x.device).unsqueeze(0) + cache_seqlens.unsqueeze(1)
|
|
|
|
width_idx = torch.remainder(width_idx, state_len).unsqueeze(1).expand(
|
|
|
|
-1, dim, -1)
|
|
|
|
x_new = torch.cat([conv_state.gather(2, width_idx), x],
|
|
|
|
dim=-1).to(weight.dtype)
|
|
|
|
copy_idx = torch.arange(
|
|
|
|
seqlen, dtype=torch.long,
|
|
|
|
device=x.device).unsqueeze(0) + cache_seqlens.unsqueeze(1)
|
|
|
|
copy_idx = torch.remainder(copy_idx,
|
|
|
|
state_len).unsqueeze(1).expand(-1, dim, -1)
|
|
|
|
conv_state.scatter_(2, copy_idx, x)
|
|
|
|
out = F.conv1d(x_new, weight.unsqueeze(1), bias, padding=0,
|
|
|
|
groups=dim)[:, :, -seqlen:]
|
|
|
|
if unsqueeze:
|
|
|
|
out = out.squeeze(-1)
|
2024-08-29 01:06:52 +03:00
|
|
|
return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
|
|
|
|
|
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
@pytest.mark.parametrize("itype", [torch.bfloat16, torch.float])
|
|
|
|
@pytest.mark.parametrize("silu_activation", [True])
|
|
|
|
@pytest.mark.parametrize("has_bias", [True])
|
2024-09-25 10:35:52 -04:00
|
|
|
def causal_conv1d_opcheck_fn(
|
|
|
|
x: torch.Tensor,
|
|
|
|
weight: torch.Tensor,
|
|
|
|
bias: Optional[torch.Tensor] = None,
|
2024-09-30 00:35:58 +03:00
|
|
|
cu_seq_len: Optional[torch.Tensor] = None,
|
|
|
|
cache_indices: Optional[torch.Tensor] = None,
|
|
|
|
has_initial_state: Optional[torch.Tensor] = None,
|
|
|
|
conv_states: Optional[torch.Tensor] = None,
|
2024-09-25 10:35:52 -04:00
|
|
|
activation: Optional[str] = "silu",
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
x: (batch, dim, seqlen)
|
|
|
|
weight: (dim, width)
|
|
|
|
bias: (dim,)
|
|
|
|
seq_idx: (batch, seqlen)
|
|
|
|
initial_states: (batch, dim, width - 1)
|
|
|
|
final_states_out: (batch, dim, width - 1), to be written to
|
|
|
|
activation: either None or "silu" or "swish"
|
|
|
|
|
|
|
|
out: (batch, dim, seqlen)
|
|
|
|
"""
|
|
|
|
if activation not in [None, "silu", "swish"]:
|
|
|
|
raise NotImplementedError("activation must be None, silu, or swish")
|
2024-09-30 00:35:58 +03:00
|
|
|
if x.stride(-1) != 1:
|
2024-09-25 10:35:52 -04:00
|
|
|
x = x.contiguous()
|
|
|
|
bias = bias.contiguous() if bias is not None else None
|
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
opcheck(torch.ops._C.causal_conv1d_fwd, (
|
|
|
|
x,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
conv_states,
|
|
|
|
cu_seq_len,
|
|
|
|
cache_indices,
|
|
|
|
has_initial_state,
|
|
|
|
activation in ["silu", "swish"],
|
|
|
|
))
|
2024-09-25 10:35:52 -04:00
|
|
|
|
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
@pytest.mark.parametrize("itype", [torch.bfloat16, torch.float])
|
|
|
|
@pytest.mark.parametrize("silu_activation", [True])
|
|
|
|
@pytest.mark.parametrize("has_bias", [True])
|
2024-08-29 01:06:52 +03:00
|
|
|
@pytest.mark.parametrize("width", [4])
|
2024-09-30 00:35:58 +03:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
'seqlen', [1, 8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
|
|
|
|
@pytest.mark.parametrize('dim', [64])
|
|
|
|
@pytest.mark.parametrize('batch', [1])
|
2024-08-29 01:06:52 +03:00
|
|
|
def test_causal_conv1d(batch, dim, seqlen, width, has_bias, silu_activation,
|
2024-09-30 00:35:58 +03:00
|
|
|
itype):
|
2024-08-29 01:06:52 +03:00
|
|
|
device = "cuda"
|
|
|
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
|
|
|
if itype == torch.bfloat16:
|
|
|
|
rtol, atol = 1e-2, 5e-2
|
|
|
|
# set seed
|
2024-09-18 18:38:11 +08:00
|
|
|
seed_everything(0)
|
2024-09-30 00:35:58 +03:00
|
|
|
x = torch.randn(batch, dim, seqlen, device=device,
|
|
|
|
dtype=itype).contiguous()
|
|
|
|
|
2024-08-29 01:06:52 +03:00
|
|
|
weight = torch.randn(dim, width, device=device, dtype=itype)
|
|
|
|
bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
|
2024-09-30 00:35:58 +03:00
|
|
|
initial_states = torch.randn(batch,
|
|
|
|
dim,
|
|
|
|
width - 1,
|
|
|
|
device=device,
|
|
|
|
dtype=itype)
|
|
|
|
x_ref = x.clone()
|
|
|
|
weight_ref = weight.clone()
|
|
|
|
bias_ref = bias.clone() if bias is not None else None
|
|
|
|
initial_states_ref = initial_states.clone(
|
2024-08-29 01:06:52 +03:00
|
|
|
) if initial_states is not None else None
|
|
|
|
activation = None if not silu_activation else "silu"
|
2024-09-30 00:35:58 +03:00
|
|
|
out = causal_conv1d_fn(x,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
activation=activation,
|
|
|
|
conv_states=initial_states,
|
|
|
|
has_initial_state=torch.ones(batch,
|
|
|
|
dtype=torch.bool,
|
|
|
|
device=x.device))
|
2024-08-29 01:06:52 +03:00
|
|
|
out_ref, final_states_ref = causal_conv1d_ref(
|
|
|
|
x_ref,
|
|
|
|
weight_ref,
|
|
|
|
bias_ref,
|
|
|
|
initial_states=initial_states_ref,
|
2024-09-30 00:35:58 +03:00
|
|
|
return_final_states=True,
|
2024-08-29 01:06:52 +03:00
|
|
|
activation=activation)
|
2024-09-30 00:35:58 +03:00
|
|
|
assert initial_states is not None and final_states_ref is not None
|
|
|
|
assert torch.allclose(initial_states,
|
|
|
|
final_states_ref,
|
|
|
|
rtol=rtol,
|
|
|
|
atol=atol)
|
2024-08-29 01:06:52 +03:00
|
|
|
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
causal_conv1d_opcheck_fn(x,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
activation=activation,
|
|
|
|
conv_states=initial_states,
|
|
|
|
has_initial_state=torch.ones(batch,
|
|
|
|
dtype=torch.bool,
|
|
|
|
device=x.device))
|
2024-08-29 01:06:52 +03:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("itype", [torch.bfloat16])
|
|
|
|
@pytest.mark.parametrize("silu_activation", [False, True])
|
|
|
|
@pytest.mark.parametrize("has_bias", [False, True])
|
2024-09-30 00:35:58 +03:00
|
|
|
@pytest.mark.parametrize("seqlen", [1])
|
|
|
|
@pytest.mark.parametrize("width", [4])
|
2024-08-29 01:06:52 +03:00
|
|
|
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
|
2024-09-30 00:35:58 +03:00
|
|
|
def test_causal_conv1d_update(dim, width, seqlen, has_bias, silu_activation,
|
2024-08-29 01:06:52 +03:00
|
|
|
itype):
|
|
|
|
device = "cuda"
|
|
|
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
|
|
|
if itype == torch.bfloat16:
|
|
|
|
rtol, atol = 1e-2, 5e-2
|
|
|
|
# set seed
|
2024-09-18 18:38:11 +08:00
|
|
|
seed_everything(0)
|
2024-08-29 01:06:52 +03:00
|
|
|
batch = 2
|
2024-09-30 00:35:58 +03:00
|
|
|
x = torch.randn(batch, dim, seqlen, device=device, dtype=itype)
|
|
|
|
conv_state = torch.randn(batch, dim, width - 1, device=device, dtype=itype)
|
|
|
|
|
2024-08-29 01:06:52 +03:00
|
|
|
weight = torch.randn(dim,
|
|
|
|
width,
|
|
|
|
device=device,
|
|
|
|
dtype=itype,
|
|
|
|
requires_grad=True)
|
|
|
|
if has_bias:
|
|
|
|
bias = torch.randn(dim, device=device, dtype=itype, requires_grad=True)
|
|
|
|
else:
|
|
|
|
bias = None
|
|
|
|
conv_state_ref = conv_state.detach().clone()
|
|
|
|
activation = None if not silu_activation else "silu"
|
|
|
|
out = causal_conv1d_update(x,
|
|
|
|
conv_state,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
activation=activation)
|
|
|
|
out_ref = causal_conv1d_update_ref(x,
|
|
|
|
conv_state_ref,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
activation=activation)
|
|
|
|
|
|
|
|
assert torch.equal(conv_state, conv_state_ref)
|
|
|
|
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
2024-09-17 19:44:27 -04:00
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
opcheck(torch.ops._C.causal_conv1d_update, (
|
|
|
|
x,
|
|
|
|
conv_state,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
activation in ["silu", "swish"],
|
|
|
|
None,
|
|
|
|
None,
|
|
|
|
))
|
2024-09-25 10:35:52 -04:00
|
|
|
|
2024-09-17 19:44:27 -04:00
|
|
|
|
|
|
|
@pytest.mark.parametrize("itype",
|
|
|
|
[torch.float32, torch.float16, torch.bfloat16])
|
|
|
|
@pytest.mark.parametrize("silu_activation", [False, True])
|
|
|
|
@pytest.mark.parametrize("has_bias", [False, True])
|
|
|
|
@pytest.mark.parametrize("seqlen", [1, 4, 5])
|
|
|
|
@pytest.mark.parametrize("width", [2, 3, 4])
|
|
|
|
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
|
|
|
|
def test_causal_conv1d_update_with_batch_gather(dim, width, seqlen, has_bias,
|
|
|
|
silu_activation, itype):
|
|
|
|
device = "cuda"
|
|
|
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
|
|
|
if itype == torch.bfloat16:
|
|
|
|
rtol, atol = 1e-2, 5e-2
|
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
# set )seed
|
|
|
|
seed_everything(0)
|
2024-09-17 19:44:27 -04:00
|
|
|
batch = 64
|
|
|
|
|
2024-09-30 00:35:58 +03:00
|
|
|
x = torch.randn(batch, dim, 1, device=device, dtype=itype)
|
2024-09-17 19:44:27 -04:00
|
|
|
|
|
|
|
total_entries = 10 * batch
|
|
|
|
conv_state = torch.randn(total_entries,
|
|
|
|
dim,
|
2024-09-30 00:35:58 +03:00
|
|
|
width - 1,
|
2024-09-17 19:44:27 -04:00
|
|
|
device=device,
|
|
|
|
dtype=itype)
|
|
|
|
conv_state_indices = torch.randperm(total_entries)[:batch].to(
|
|
|
|
dtype=torch.int32, device=device)
|
|
|
|
|
|
|
|
weight = torch.randn(dim,
|
|
|
|
width,
|
|
|
|
device=device,
|
|
|
|
dtype=itype,
|
|
|
|
requires_grad=True)
|
|
|
|
if has_bias:
|
|
|
|
bias = torch.randn(dim, device=device, dtype=itype, requires_grad=True)
|
|
|
|
else:
|
|
|
|
bias = None
|
|
|
|
conv_state_ref = conv_state[conv_state_indices, :].detach().clone()
|
|
|
|
activation = None if not silu_activation else "silu"
|
|
|
|
out = causal_conv1d_update(x,
|
|
|
|
conv_state,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
activation=activation,
|
|
|
|
conv_state_indices=conv_state_indices)
|
|
|
|
out_ref = causal_conv1d_update_ref(x,
|
|
|
|
conv_state_ref,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
activation=activation)
|
|
|
|
|
|
|
|
assert torch.equal(conv_state[conv_state_indices, :], conv_state_ref)
|
|
|
|
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
2024-09-30 00:35:58 +03:00
|
|
|
|
|
|
|
opcheck(torch.ops._C.causal_conv1d_update, (
|
|
|
|
x,
|
|
|
|
conv_state,
|
|
|
|
weight,
|
|
|
|
bias,
|
|
|
|
activation in ["silu", "swish"],
|
|
|
|
None,
|
|
|
|
conv_state_indices,
|
|
|
|
))
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("itype", [torch.bfloat16])
|
|
|
|
@pytest.mark.parametrize("silu_activation", [True])
|
|
|
|
@pytest.mark.parametrize("has_bias", [True])
|
|
|
|
@pytest.mark.parametrize("width", [4])
|
|
|
|
@pytest.mark.parametrize('seqlen',
|
|
|
|
[8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
|
|
|
|
@pytest.mark.parametrize('dim', [64, 4096])
|
|
|
|
def test_causal_conv1d_varlen(dim, seqlen, width, has_bias, silu_activation,
|
|
|
|
itype):
|
|
|
|
device = "cuda"
|
|
|
|
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
|
|
|
|
if itype == torch.bfloat16:
|
|
|
|
rtol, atol = 1e-2, 5e-2
|
|
|
|
# set seed
|
|
|
|
seed_everything(0)
|
|
|
|
batch = 1
|
|
|
|
seqlens = []
|
|
|
|
nsplits = 3
|
|
|
|
eos_pos = torch.randperm(seqlen - 1)[:nsplits].sort().values
|
|
|
|
seqlens.append(
|
|
|
|
torch.diff(
|
|
|
|
torch.cat(
|
|
|
|
[torch.tensor([-1]), eos_pos,
|
|
|
|
torch.tensor([seqlen - 1])])).tolist())
|
|
|
|
assert sum(seqlens[-1]) == seqlen
|
|
|
|
assert all(s > 0 for s in seqlens[-1])
|
|
|
|
|
|
|
|
cumsum = torch.cumsum(torch.tensor(seqlens[0]), dim=0).to(torch.int32)
|
|
|
|
cumsum = torch.concat([torch.tensor([0], dtype=torch.int32), cumsum],
|
|
|
|
dim=0)
|
|
|
|
x = torch.randn(batch, 4096 + dim + 64, seqlen, device=device,
|
|
|
|
dtype=itype)[:, 4096:4096 + dim, :]
|
|
|
|
weight = torch.randn(dim, width, device=device, dtype=itype)
|
|
|
|
bias = torch.randn(dim, device=device, dtype=itype) if has_bias else None
|
|
|
|
x_ref = x.clone()
|
|
|
|
weight_ref = weight.clone()
|
|
|
|
bias_ref = bias.clone() if bias is not None else None
|
|
|
|
activation = None if not silu_activation else "silu"
|
|
|
|
final_states = torch.randn(nsplits + 1,
|
|
|
|
dim,
|
|
|
|
width - 1,
|
|
|
|
device=x.device,
|
|
|
|
dtype=x.dtype)
|
|
|
|
final_states_ref = final_states.clone()
|
|
|
|
has_initial_states = torch.randint(0,
|
|
|
|
2, (cumsum.shape[0] - 1, ),
|
|
|
|
dtype=torch.bool,
|
|
|
|
device=x.device)
|
|
|
|
cache_indices = torch.randperm(cumsum.shape[0] - 1,
|
|
|
|
dtype=torch.int32,
|
|
|
|
device=x.device)
|
|
|
|
out = causal_conv1d_fn(x.squeeze(0), weight, bias, cumsum.cuda(),
|
|
|
|
cache_indices, has_initial_states, final_states,
|
|
|
|
activation)
|
|
|
|
out_ref = []
|
|
|
|
out_ref_b = []
|
|
|
|
|
|
|
|
splits = [torch.split(var, seqlens[0], dim=-1) for var in (x_ref)]
|
|
|
|
for i in range(len(seqlens[0])):
|
|
|
|
x_s = [v[i].unsqueeze(0) for v in splits][0]
|
|
|
|
out_ref_b.append(
|
|
|
|
causal_conv1d_ref(
|
|
|
|
x_s,
|
|
|
|
weight_ref,
|
|
|
|
bias_ref,
|
|
|
|
activation=activation,
|
|
|
|
return_final_states=True,
|
|
|
|
final_states_out=final_states_ref[cache_indices[i]].unsqueeze(
|
|
|
|
0),
|
|
|
|
initial_states=final_states_ref[cache_indices[i]].unsqueeze(0)
|
|
|
|
if has_initial_states[i] else None))
|
|
|
|
out_ref.append(torch.cat([t[0] for t in out_ref_b], dim=2))
|
|
|
|
out_ref = torch.cat(out_ref, dim=0)
|
|
|
|
|
|
|
|
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
|
|
|
|
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
|
|
|
|
print("Output state max diff"
|
|
|
|
f":{(final_states - final_states_ref).abs().max()}")
|
|
|
|
print("Output state mean diff"
|
|
|
|
f":{(final_states - final_states_ref).abs().mean()}")
|
|
|
|
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
|
|
|
|
assert torch.allclose(final_states, final_states_ref, rtol=rtol, atol=atol)
|
|
|
|
causal_conv1d_opcheck_fn(x.squeeze(0), weight, bias, cumsum.cuda(),
|
|
|
|
cache_indices, has_initial_states, final_states,
|
|
|
|
activation)
|