We support tracing vLLM workers using the ``torch.profiler`` module. You can enable tracing by setting the ``VLLM_TORCH_PROFILER_DIR`` environment variable to the directory where you want to save the traces: ``VLLM_TORCH_PROFILER_DIR=/mnt/traces/``
The OpenAI server also needs to be started with the ``VLLM_TORCH_PROFILER_DIR`` environment variable set.
When using ``benchmarks/benchmark_serving.py``, you can enable profiling by passing the ``--profile`` flag.
..warning::
Only enable profiling in a development environment.
Traces can be visualized using https://ui.perfetto.dev/.
..tip::
Only send a few requests through vLLM when profiling, as the traces can get quite large. Also, no need to untar the traces, they can be viewed directly.
To stop the profiler - it flushes out all the profile trace files to the directory. This takes time, for example for about 100 requests worth of data for a llama 70b, it takes about 10 minutes to flush out on a H100.
Refer to `examples/offline_inference_with_profiler.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_with_profiler.py>`_ for an example.