2024-03-25 14:16:30 -07:00
|
|
|
import enum
|
2024-03-25 23:59:47 +09:00
|
|
|
import json
|
2024-04-16 11:34:39 -07:00
|
|
|
from dataclasses import dataclass, field, fields
|
2024-05-18 16:05:23 +09:00
|
|
|
from typing import TYPE_CHECKING, ClassVar, List, Optional, Tuple, Union
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
import torch
|
2023-07-03 16:47:53 -07:00
|
|
|
from transformers import PretrainedConfig
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2023-06-17 03:07:40 -07:00
|
|
|
from vllm.logger import init_logger
|
2024-05-16 12:56:15 -04:00
|
|
|
from vllm.model_executor.layers.quantization import QUANTIZATION_METHODS
|
2024-05-11 11:30:37 -07:00
|
|
|
from vllm.model_executor.models import ModelRegistry
|
2024-03-25 14:16:30 -07:00
|
|
|
from vllm.transformers_utils.config import get_config, get_hf_text_config
|
2024-05-06 07:58:55 +08:00
|
|
|
from vllm.utils import get_cpu_memory, is_cpu, is_hip, is_neuron
|
2023-05-23 18:22:26 -07:00
|
|
|
|
2024-03-11 11:03:45 -07:00
|
|
|
if TYPE_CHECKING:
|
|
|
|
from ray.util.placement_group import PlacementGroup
|
|
|
|
|
2024-04-16 11:34:39 -07:00
|
|
|
from vllm.model_executor.model_loader.loader import BaseModelLoader
|
2024-04-13 20:13:01 -04:00
|
|
|
|
2023-05-23 18:22:26 -07:00
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
2023-07-03 11:31:55 -07:00
|
|
|
_GB = 1 << 30
|
2024-05-11 11:30:37 -07:00
|
|
|
_EMBEDDING_MODEL_MAX_NUM_BATCHED_TOKENS = 32768
|
2023-05-21 17:04:18 -07:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
class ModelConfig:
|
2023-06-07 18:25:20 +08:00
|
|
|
"""Configuration for the model.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model: Name or path of the huggingface model to use.
|
2024-05-05 06:39:34 +08:00
|
|
|
It is also used as the content for `model_name` tag in metrics
|
|
|
|
output when `served_model_name` is not specified.
|
2023-06-28 09:46:58 -07:00
|
|
|
tokenizer: Name or path of the huggingface tokenizer to use.
|
2023-06-28 14:19:22 -07:00
|
|
|
tokenizer_mode: Tokenizer mode. "auto" will use the fast tokenizer if
|
|
|
|
available, and "slow" will always use the slow tokenizer.
|
2023-07-07 20:04:58 +02:00
|
|
|
trust_remote_code: Trust remote code (e.g., from HuggingFace) when
|
|
|
|
downloading the model and tokenizer.
|
2023-06-07 18:25:20 +08:00
|
|
|
dtype: Data type for model weights and activations. The "auto" option
|
|
|
|
will use FP16 precision for FP32 and FP16 models, and BF16 precision
|
|
|
|
for BF16 models.
|
|
|
|
seed: Random seed for reproducibility.
|
2023-09-14 06:20:02 +08:00
|
|
|
revision: The specific model version to use. It can be a branch name,
|
|
|
|
a tag name, or a commit id. If unspecified, will use the default
|
|
|
|
version.
|
2024-02-17 22:36:53 -08:00
|
|
|
code_revision: The specific revision to use for the model code on
|
2024-03-10 19:49:14 -07:00
|
|
|
Hugging Face Hub. It can be a branch name, a tag name, or a
|
2024-02-17 22:36:53 -08:00
|
|
|
commit id. If unspecified, will use the default version.
|
2024-05-22 05:32:35 +00:00
|
|
|
rope_scaling: Dictionary containing the scaling configuration for the
|
|
|
|
RoPE embeddings. When using this flag, don't update
|
|
|
|
`max_position_embeddings` to the expected new maximum.
|
2023-10-02 22:19:46 -04:00
|
|
|
tokenizer_revision: The specific tokenizer version to use. It can be a
|
|
|
|
branch name, a tag name, or a commit id. If unspecified, will use
|
|
|
|
the default version.
|
2023-09-12 16:29:19 -07:00
|
|
|
max_model_len: Maximum length of a sequence (including prompt and
|
|
|
|
output). If None, will be derived from the model.
|
2023-09-16 00:03:37 -07:00
|
|
|
quantization: Quantization method that was used to quantize the model
|
|
|
|
weights. If None, we assume the model weights are not quantized.
|
2024-04-03 16:15:55 -05:00
|
|
|
quantization_param_path: Path to JSON file containing scaling factors.
|
|
|
|
Used to load KV cache scaling factors into the model when KV cache
|
2024-04-16 08:54:57 +03:00
|
|
|
type is FP8_E4M3 on ROCm (AMD GPU). In the future these will also
|
|
|
|
be used to load activation and weight scaling factors when the
|
2024-04-03 16:15:55 -05:00
|
|
|
model dtype is FP8_E4M3 on ROCm.
|
2023-12-16 21:12:08 -08:00
|
|
|
enforce_eager: Whether to enforce eager execution. If True, we will
|
|
|
|
disable CUDA graph and always execute the model in eager mode.
|
|
|
|
If False, we will use CUDA graph and eager execution in hybrid.
|
|
|
|
max_context_len_to_capture: Maximum context len covered by CUDA graphs.
|
|
|
|
When a sequence has context length larger than this, we fall back
|
2024-05-04 02:20:12 +09:00
|
|
|
to eager mode (DEPRECATED. Use max_seq_len_to_capture instead).
|
|
|
|
max_seq_len_to_capture: Maximum sequence len covered by CUDA graphs.
|
|
|
|
When a sequence has context length larger than this, we fall back
|
|
|
|
to eager mode
|
2024-05-27 15:18:17 -07:00
|
|
|
disable_sliding_window: Whether to disable sliding window. If True,
|
|
|
|
we will disable the sliding window functionality of the model.
|
|
|
|
If the model does not support sliding window, this argument is
|
|
|
|
ignored.
|
2024-04-21 15:06:46 -07:00
|
|
|
skip_tokenizer_init: If true, skip initialization of tokenizer and
|
|
|
|
detokenizer.
|
2024-05-05 06:39:34 +08:00
|
|
|
served_model_name: The model name used in metrics tag `model_name`,
|
|
|
|
matches the model name exposed via the APIs. If multiple model
|
|
|
|
names provided, the first name will be used. If not specified,
|
|
|
|
the model name will be the same as `model`.
|
2023-06-07 18:25:20 +08:00
|
|
|
"""
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model: str,
|
2023-06-28 14:19:22 -07:00
|
|
|
tokenizer: str,
|
|
|
|
tokenizer_mode: str,
|
2023-07-07 20:04:58 +02:00
|
|
|
trust_remote_code: bool,
|
2023-11-16 04:31:06 -05:00
|
|
|
dtype: Union[str, torch.dtype],
|
2023-05-20 13:06:59 -07:00
|
|
|
seed: int,
|
2023-09-20 13:35:11 -07:00
|
|
|
revision: Optional[str] = None,
|
2024-02-17 22:36:53 -08:00
|
|
|
code_revision: Optional[str] = None,
|
2024-05-22 05:32:35 +00:00
|
|
|
rope_scaling: Optional[dict] = None,
|
2023-10-02 22:19:46 -04:00
|
|
|
tokenizer_revision: Optional[str] = None,
|
2023-09-12 16:29:19 -07:00
|
|
|
max_model_len: Optional[int] = None,
|
2023-09-16 00:03:37 -07:00
|
|
|
quantization: Optional[str] = None,
|
2024-04-03 16:15:55 -05:00
|
|
|
quantization_param_path: Optional[str] = None,
|
2023-12-16 21:12:08 -08:00
|
|
|
enforce_eager: bool = False,
|
|
|
|
max_context_len_to_capture: Optional[int] = None,
|
2024-05-04 02:20:12 +09:00
|
|
|
max_seq_len_to_capture: Optional[int] = None,
|
2024-03-04 11:54:06 -08:00
|
|
|
max_logprobs: int = 5,
|
2024-05-27 15:18:17 -07:00
|
|
|
disable_sliding_window: bool = False,
|
2024-04-21 15:06:46 -07:00
|
|
|
skip_tokenizer_init: bool = False,
|
2024-05-05 06:39:34 +08:00
|
|
|
served_model_name: Optional[Union[str, List[str]]] = None,
|
2023-05-20 13:06:59 -07:00
|
|
|
) -> None:
|
|
|
|
self.model = model
|
2023-06-28 09:46:58 -07:00
|
|
|
self.tokenizer = tokenizer
|
2023-06-28 14:19:22 -07:00
|
|
|
self.tokenizer_mode = tokenizer_mode
|
2023-07-07 20:04:58 +02:00
|
|
|
self.trust_remote_code = trust_remote_code
|
2023-05-20 13:06:59 -07:00
|
|
|
self.seed = seed
|
2023-09-14 06:20:02 +08:00
|
|
|
self.revision = revision
|
2024-02-17 22:36:53 -08:00
|
|
|
self.code_revision = code_revision
|
2024-05-22 05:32:35 +00:00
|
|
|
self.rope_scaling = rope_scaling
|
2023-10-02 22:19:46 -04:00
|
|
|
self.tokenizer_revision = tokenizer_revision
|
2023-09-16 00:03:37 -07:00
|
|
|
self.quantization = quantization
|
2024-04-03 16:15:55 -05:00
|
|
|
self.quantization_param_path = quantization_param_path
|
2023-12-16 21:12:08 -08:00
|
|
|
self.enforce_eager = enforce_eager
|
|
|
|
self.max_context_len_to_capture = max_context_len_to_capture
|
2024-05-04 02:20:12 +09:00
|
|
|
if self.max_context_len_to_capture is not None:
|
|
|
|
raise ValueError("`max_context_len_to_capture` is deprecated. "
|
|
|
|
"Use `max_seq_len_to_capture` instead.")
|
|
|
|
self.max_seq_len_to_capture = (max_seq_len_to_capture
|
|
|
|
or max_context_len_to_capture)
|
2024-03-04 11:54:06 -08:00
|
|
|
self.max_logprobs = max_logprobs
|
2024-05-27 15:18:17 -07:00
|
|
|
self.disable_sliding_window = disable_sliding_window
|
2024-04-21 15:06:46 -07:00
|
|
|
self.skip_tokenizer_init = skip_tokenizer_init
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-02-17 22:36:53 -08:00
|
|
|
self.hf_config = get_config(self.model, trust_remote_code, revision,
|
2024-05-22 05:32:35 +00:00
|
|
|
code_revision, rope_scaling)
|
2024-03-25 14:16:30 -07:00
|
|
|
self.hf_text_config = get_hf_text_config(self.hf_config)
|
|
|
|
self.dtype = _get_and_verify_dtype(self.hf_text_config, dtype)
|
2024-05-27 15:18:17 -07:00
|
|
|
self.max_model_len = _get_and_verify_max_len(
|
|
|
|
hf_config=self.hf_text_config,
|
|
|
|
max_model_len=max_model_len,
|
|
|
|
disable_sliding_window=self.disable_sliding_window,
|
|
|
|
sliding_window_len=self.get_hf_config_sliding_window())
|
2024-05-05 06:39:34 +08:00
|
|
|
self.served_model_name = get_served_model_name(model,
|
|
|
|
served_model_name)
|
2024-04-21 15:06:46 -07:00
|
|
|
if not self.skip_tokenizer_init:
|
|
|
|
self._verify_tokenizer_mode()
|
2024-05-11 11:30:37 -07:00
|
|
|
self._verify_embedding_mode()
|
2023-09-16 00:03:37 -07:00
|
|
|
self._verify_quantization()
|
2023-12-16 21:12:08 -08:00
|
|
|
self._verify_cuda_graph()
|
2023-06-28 14:19:22 -07:00
|
|
|
|
|
|
|
def _verify_tokenizer_mode(self) -> None:
|
|
|
|
tokenizer_mode = self.tokenizer_mode.lower()
|
|
|
|
if tokenizer_mode not in ["auto", "slow"]:
|
|
|
|
raise ValueError(
|
|
|
|
f"Unknown tokenizer mode: {self.tokenizer_mode}. Must be "
|
|
|
|
"either 'auto' or 'slow'.")
|
|
|
|
self.tokenizer_mode = tokenizer_mode
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-05-11 11:30:37 -07:00
|
|
|
def _verify_embedding_mode(self) -> None:
|
|
|
|
architectures = getattr(self.hf_config, "architectures", [])
|
|
|
|
self.embedding_mode = any(
|
|
|
|
ModelRegistry.is_embedding_model(arch) for arch in architectures)
|
|
|
|
|
2024-05-30 05:58:37 -07:00
|
|
|
def _parse_quant_hf_config(self):
|
|
|
|
quant_cfg = getattr(self.hf_config, "quantization_config", None)
|
|
|
|
if quant_cfg is None:
|
|
|
|
# SparseML uses a "compression_config" with a "quantization_config".
|
|
|
|
compression_cfg = getattr(self.hf_config, "compression_config",
|
|
|
|
None)
|
|
|
|
if compression_cfg is not None:
|
|
|
|
quant_cfg = compression_cfg.get("quantization_config", None)
|
|
|
|
|
|
|
|
return quant_cfg
|
|
|
|
|
2023-09-16 00:03:37 -07:00
|
|
|
def _verify_quantization(self) -> None:
|
2024-04-18 03:21:55 -04:00
|
|
|
supported_quantization = [*QUANTIZATION_METHODS]
|
|
|
|
rocm_supported_quantization = ["gptq", "squeezellm"]
|
2023-11-17 16:23:49 -08:00
|
|
|
if self.quantization is not None:
|
|
|
|
self.quantization = self.quantization.lower()
|
|
|
|
|
|
|
|
# Parse quantization method from the HF model config, if available.
|
2024-05-30 05:58:37 -07:00
|
|
|
quant_cfg = self._parse_quant_hf_config()
|
|
|
|
|
2024-04-02 07:32:01 +08:00
|
|
|
if quant_cfg is not None:
|
|
|
|
quant_method = quant_cfg.get("quant_method", "").lower()
|
2024-05-16 12:56:15 -04:00
|
|
|
|
|
|
|
# Detect which checkpoint is it
|
2024-05-30 05:58:37 -07:00
|
|
|
for _, method in QUANTIZATION_METHODS.items():
|
2024-05-16 12:56:15 -04:00
|
|
|
quantization_override = method.override_quantization_method(
|
|
|
|
quant_cfg, self.quantization)
|
|
|
|
if quantization_override:
|
|
|
|
quant_method = quantization_override
|
|
|
|
self.quantization = quantization_override
|
|
|
|
break
|
2024-03-13 13:51:42 +08:00
|
|
|
|
2024-04-29 12:35:34 -04:00
|
|
|
# Verify quantization configurations.
|
2023-11-17 16:23:49 -08:00
|
|
|
if self.quantization is None:
|
2024-04-02 07:32:01 +08:00
|
|
|
self.quantization = quant_method
|
|
|
|
elif self.quantization != quant_method:
|
2023-11-17 16:23:49 -08:00
|
|
|
raise ValueError(
|
|
|
|
"Quantization method specified in the model config "
|
2024-04-02 07:32:01 +08:00
|
|
|
f"({quant_method}) does not match the quantization "
|
2023-11-17 16:23:49 -08:00
|
|
|
f"method specified in the `quantization` argument "
|
|
|
|
f"({self.quantization}).")
|
|
|
|
|
|
|
|
if self.quantization is not None:
|
|
|
|
if self.quantization not in supported_quantization:
|
|
|
|
raise ValueError(
|
|
|
|
f"Unknown quantization method: {self.quantization}. Must "
|
|
|
|
f"be one of {supported_quantization}.")
|
2023-12-08 15:16:52 +08:00
|
|
|
if is_hip(
|
2024-04-18 03:21:55 -04:00
|
|
|
) and self.quantization not in rocm_supported_quantization:
|
2023-12-08 15:16:52 +08:00
|
|
|
raise ValueError(
|
2024-03-10 19:49:14 -07:00
|
|
|
f"{self.quantization} quantization is currently not "
|
|
|
|
f"supported in ROCm.")
|
2024-05-16 12:56:15 -04:00
|
|
|
if (self.quantization
|
|
|
|
not in ["marlin", "gptq_marlin_24", "gptq_marlin"]):
|
2024-03-01 14:47:51 -06:00
|
|
|
logger.warning(
|
2024-04-26 16:16:58 +09:00
|
|
|
"%s quantization is not fully "
|
2024-03-01 14:47:51 -06:00
|
|
|
"optimized yet. The speed can be slower than "
|
2024-04-26 16:16:58 +09:00
|
|
|
"non-quantized models.", self.quantization)
|
2023-09-16 00:03:37 -07:00
|
|
|
|
2023-12-16 21:12:08 -08:00
|
|
|
def _verify_cuda_graph(self) -> None:
|
2024-05-04 02:20:12 +09:00
|
|
|
if self.max_seq_len_to_capture is None:
|
|
|
|
self.max_seq_len_to_capture = self.max_model_len
|
|
|
|
self.max_seq_len_to_capture = min(self.max_seq_len_to_capture,
|
|
|
|
self.max_model_len)
|
2023-12-16 21:12:08 -08:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
def verify_with_parallel_config(
|
|
|
|
self,
|
|
|
|
parallel_config: "ParallelConfig",
|
|
|
|
) -> None:
|
2024-03-25 14:16:30 -07:00
|
|
|
total_num_attention_heads = self.hf_text_config.num_attention_heads
|
2023-05-20 13:06:59 -07:00
|
|
|
tensor_parallel_size = parallel_config.tensor_parallel_size
|
|
|
|
if total_num_attention_heads % tensor_parallel_size != 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"Total number of attention heads ({total_num_attention_heads})"
|
|
|
|
" must be divisible by tensor parallel size "
|
|
|
|
f"({tensor_parallel_size}).")
|
|
|
|
|
2024-03-25 14:16:30 -07:00
|
|
|
total_num_hidden_layers = self.hf_text_config.num_hidden_layers
|
2023-05-20 13:06:59 -07:00
|
|
|
pipeline_parallel_size = parallel_config.pipeline_parallel_size
|
|
|
|
if total_num_hidden_layers % pipeline_parallel_size != 0:
|
|
|
|
raise ValueError(
|
|
|
|
f"Total number of hidden layers ({total_num_hidden_layers}) "
|
|
|
|
"must be divisible by pipeline parallel size "
|
|
|
|
f"({pipeline_parallel_size}).")
|
|
|
|
|
2024-05-27 15:18:17 -07:00
|
|
|
def get_hf_config_sliding_window(self) -> Optional[int]:
|
2024-03-15 04:56:57 +08:00
|
|
|
"""Get the sliding window size, or None if disabled.
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Some models, like Qwen2 and Qwen1.5, use `use_sliding_window` in
|
|
|
|
# addition to sliding window size. We check if that field is present
|
|
|
|
# and if it's False, return None.
|
2024-03-25 14:16:30 -07:00
|
|
|
if (hasattr(self.hf_text_config, "use_sliding_window")
|
|
|
|
and not self.hf_text_config.use_sliding_window):
|
2024-03-15 04:56:57 +08:00
|
|
|
return None
|
2024-03-25 14:16:30 -07:00
|
|
|
return getattr(self.hf_text_config, "sliding_window", None)
|
2023-11-29 22:16:37 -08:00
|
|
|
|
2024-05-27 15:18:17 -07:00
|
|
|
def get_sliding_window(self) -> Optional[int]:
|
|
|
|
"""Get the sliding window size, or None if disabled.
|
|
|
|
"""
|
|
|
|
# If user disables sliding window, return None.
|
|
|
|
if self.disable_sliding_window:
|
|
|
|
return None
|
|
|
|
# Otherwise get the value from the hf config.
|
|
|
|
return self.get_hf_config_sliding_window()
|
|
|
|
|
2023-11-29 22:16:37 -08:00
|
|
|
def get_vocab_size(self) -> int:
|
2024-03-25 14:16:30 -07:00
|
|
|
return self.hf_text_config.vocab_size
|
2023-11-29 22:16:37 -08:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
def get_hidden_size(self) -> int:
|
2024-03-25 14:16:30 -07:00
|
|
|
return self.hf_text_config.hidden_size
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
def get_head_size(self) -> int:
|
2024-03-25 14:16:30 -07:00
|
|
|
if hasattr(self.hf_text_config, "head_dim"):
|
|
|
|
return self.hf_text_config.head_dim
|
2023-05-20 13:06:59 -07:00
|
|
|
# FIXME(woosuk): This may not be true for all models.
|
2024-03-25 14:16:30 -07:00
|
|
|
return (self.hf_text_config.hidden_size //
|
|
|
|
self.hf_text_config.num_attention_heads)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2023-11-15 22:50:41 -08:00
|
|
|
def get_total_num_kv_heads(self) -> int:
|
|
|
|
"""Returns the total number of KV heads."""
|
2023-08-02 14:04:39 -07:00
|
|
|
# For GPTBigCode & Falcon:
|
2023-10-16 10:56:50 -07:00
|
|
|
# NOTE: for falcon, when new_decoder_architecture is True, the
|
2023-08-02 14:04:39 -07:00
|
|
|
# multi_query flag is ignored and we use n_head_kv for the number of
|
|
|
|
# KV heads.
|
2023-09-10 17:39:02 +09:00
|
|
|
falcon_model_types = ["falcon", "RefinedWeb", "RefinedWebModel"]
|
2023-08-05 01:35:22 +08:00
|
|
|
new_decoder_arch_falcon = (
|
2023-09-10 17:39:02 +09:00
|
|
|
self.hf_config.model_type in falcon_model_types
|
2023-08-05 01:35:22 +08:00
|
|
|
and getattr(self.hf_config, "new_decoder_architecture", False))
|
2024-03-25 14:16:30 -07:00
|
|
|
if not new_decoder_arch_falcon and getattr(self.hf_text_config,
|
2023-08-05 01:35:22 +08:00
|
|
|
"multi_query", False):
|
2023-07-14 20:06:40 -04:00
|
|
|
# Multi-query attention, only one KV head.
|
2023-09-23 17:38:43 -07:00
|
|
|
# Currently, tensor parallelism is not supported in this case.
|
2023-07-14 20:06:40 -04:00
|
|
|
return 1
|
2023-11-15 22:50:41 -08:00
|
|
|
|
2024-03-27 13:01:46 -07:00
|
|
|
# For DBRX and MPT
|
|
|
|
if self.hf_config.model_type in ["dbrx", "mpt"]:
|
|
|
|
return getattr(self.hf_config.attn_config, "kv_n_heads",
|
|
|
|
self.hf_config.num_attention_heads)
|
|
|
|
|
2023-11-15 22:50:41 -08:00
|
|
|
attributes = [
|
|
|
|
# For Falcon:
|
|
|
|
"n_head_kv",
|
|
|
|
"num_kv_heads",
|
|
|
|
# For LLaMA-2:
|
|
|
|
"num_key_value_heads",
|
|
|
|
# For ChatGLM:
|
|
|
|
"multi_query_group_num",
|
|
|
|
]
|
|
|
|
for attr in attributes:
|
2024-03-25 14:16:30 -07:00
|
|
|
num_kv_heads = getattr(self.hf_text_config, attr, None)
|
2023-11-15 22:50:41 -08:00
|
|
|
if num_kv_heads is not None:
|
|
|
|
return num_kv_heads
|
|
|
|
|
|
|
|
# For non-grouped-query attention models, the number of KV heads is
|
|
|
|
# equal to the number of attention heads.
|
2024-03-25 14:16:30 -07:00
|
|
|
return self.hf_text_config.num_attention_heads
|
2023-11-15 22:50:41 -08:00
|
|
|
|
|
|
|
def get_num_kv_heads(self, parallel_config: "ParallelConfig") -> int:
|
|
|
|
"""Returns the number of KV heads per GPU."""
|
|
|
|
total_num_kv_heads = self.get_total_num_kv_heads()
|
|
|
|
# If tensor parallelism is used, we divide the number of KV heads by
|
|
|
|
# the tensor parallel size. We will replicate the KV heads in the
|
|
|
|
# case where the number of KV heads is smaller than the tensor
|
|
|
|
# parallel size so each GPU has at least one KV head.
|
|
|
|
return max(1,
|
|
|
|
total_num_kv_heads // parallel_config.tensor_parallel_size)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-05-03 15:51:27 -07:00
|
|
|
def get_num_attention_heads(self,
|
|
|
|
parallel_config: "ParallelConfig") -> int:
|
|
|
|
return self.hf_text_config.num_attention_heads // \
|
|
|
|
parallel_config.tensor_parallel_size
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
def get_num_layers(self, parallel_config: "ParallelConfig") -> int:
|
2024-03-25 14:16:30 -07:00
|
|
|
total_num_hidden_layers = self.hf_text_config.num_hidden_layers
|
2023-05-20 13:06:59 -07:00
|
|
|
return total_num_hidden_layers // parallel_config.pipeline_parallel_size
|
|
|
|
|
|
|
|
|
|
|
|
class CacheConfig:
|
2023-06-07 18:25:20 +08:00
|
|
|
"""Configuration for the KV cache.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
block_size: Size of a cache block in number of tokens.
|
|
|
|
gpu_memory_utilization: Fraction of GPU memory to use for the
|
2023-06-17 03:07:40 -07:00
|
|
|
vLLM execution.
|
2023-06-07 18:25:20 +08:00
|
|
|
swap_space: Size of the CPU swap space per GPU (in GiB).
|
2024-01-29 08:43:54 +08:00
|
|
|
cache_dtype: Data type for kv cache storage.
|
2024-04-09 11:44:15 -07:00
|
|
|
num_gpu_blocks_override: Number of GPU blocks to use. This overrides the
|
2024-03-27 23:59:28 -07:00
|
|
|
profiled num_gpu_blocks if specified. Does nothing if None.
|
2023-06-07 18:25:20 +08:00
|
|
|
"""
|
2023-07-03 11:31:55 -07:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
block_size: int,
|
|
|
|
gpu_memory_utilization: float,
|
|
|
|
swap_space: int,
|
2024-01-29 08:43:54 +08:00
|
|
|
cache_dtype: str,
|
2024-04-09 11:44:15 -07:00
|
|
|
num_gpu_blocks_override: Optional[int] = None,
|
2023-09-28 19:41:03 +02:00
|
|
|
sliding_window: Optional[int] = None,
|
2024-03-02 03:50:01 -05:00
|
|
|
enable_prefix_caching: bool = False,
|
2023-05-20 13:06:59 -07:00
|
|
|
) -> None:
|
|
|
|
self.block_size = block_size
|
|
|
|
self.gpu_memory_utilization = gpu_memory_utilization
|
2023-07-03 11:31:55 -07:00
|
|
|
self.swap_space_bytes = swap_space * _GB
|
2024-04-09 11:44:15 -07:00
|
|
|
self.num_gpu_blocks_override = num_gpu_blocks_override
|
2024-01-29 08:43:54 +08:00
|
|
|
self.cache_dtype = cache_dtype
|
2023-09-28 19:41:03 +02:00
|
|
|
self.sliding_window = sliding_window
|
2024-03-02 03:50:01 -05:00
|
|
|
self.enable_prefix_caching = enable_prefix_caching
|
2023-05-23 18:22:26 -07:00
|
|
|
self._verify_args()
|
2024-01-29 08:43:54 +08:00
|
|
|
self._verify_cache_dtype()
|
2024-05-27 15:18:17 -07:00
|
|
|
self._verify_prefix_caching()
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
# Will be set after profiling.
|
|
|
|
self.num_gpu_blocks = None
|
|
|
|
self.num_cpu_blocks = None
|
|
|
|
|
2024-02-29 14:15:18 +08:00
|
|
|
def metrics_info(self):
|
2024-03-10 19:49:14 -07:00
|
|
|
# convert cache_config to dict(key: str, value: str) for prometheus
|
|
|
|
# metrics info
|
2024-02-29 14:15:18 +08:00
|
|
|
return {key: str(value) for key, value in self.__dict__.items()}
|
|
|
|
|
2023-05-23 18:22:26 -07:00
|
|
|
def _verify_args(self) -> None:
|
|
|
|
if self.gpu_memory_utilization > 1.0:
|
|
|
|
raise ValueError(
|
|
|
|
"GPU memory utilization must be less than 1.0. Got "
|
|
|
|
f"{self.gpu_memory_utilization}.")
|
|
|
|
|
2024-01-29 08:43:54 +08:00
|
|
|
def _verify_cache_dtype(self) -> None:
|
|
|
|
if self.cache_dtype == "auto":
|
|
|
|
pass
|
2024-05-22 13:28:20 -07:00
|
|
|
elif self.cache_dtype in ("fp8", "fp8_e4m3", "fp8_e5m2"):
|
2024-01-29 08:43:54 +08:00
|
|
|
logger.info(
|
2024-04-03 16:15:55 -05:00
|
|
|
"Using fp8 data type to store kv cache. It reduces the GPU "
|
|
|
|
"memory footprint and boosts the performance. "
|
2024-05-22 13:28:20 -07:00
|
|
|
"Meanwhile, it may cause accuracy drop without a proper "
|
|
|
|
"scaling factor")
|
2024-01-29 08:43:54 +08:00
|
|
|
else:
|
|
|
|
raise ValueError(f"Unknown kv cache dtype: {self.cache_dtype}")
|
|
|
|
|
2024-05-27 15:18:17 -07:00
|
|
|
def _verify_prefix_caching(self) -> None:
|
|
|
|
if not self.enable_prefix_caching:
|
|
|
|
return
|
|
|
|
|
|
|
|
if self.sliding_window is not None:
|
|
|
|
raise NotImplementedError(
|
|
|
|
"Prefix caching is not supported with sliding window. "
|
|
|
|
"Run with --disable-sliding-window to use prefix caching.")
|
|
|
|
if self.cache_dtype == "fp8":
|
|
|
|
raise NotImplementedError(
|
|
|
|
"Prefix caching is not supported for fp8 cache_dtype. "
|
|
|
|
"Run with --kv-cache-dtype auto to use prefix caching.")
|
|
|
|
|
2023-05-23 18:22:26 -07:00
|
|
|
def verify_with_parallel_config(
|
|
|
|
self,
|
|
|
|
parallel_config: "ParallelConfig",
|
|
|
|
) -> None:
|
|
|
|
total_cpu_memory = get_cpu_memory()
|
|
|
|
# FIXME(woosuk): Here, it is assumed that the GPUs in a tensor parallel
|
|
|
|
# group are in the same node. However, the GPUs may span multiple nodes.
|
|
|
|
num_gpus_per_node = parallel_config.tensor_parallel_size
|
|
|
|
cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node
|
|
|
|
|
2023-07-03 11:31:55 -07:00
|
|
|
msg = (f"{cpu_memory_usage / _GB:.2f} GiB out of "
|
|
|
|
f"the {total_cpu_memory / _GB:.2f} GiB total CPU memory is "
|
|
|
|
"allocated for the swap space.")
|
2023-05-23 18:22:26 -07:00
|
|
|
if cpu_memory_usage > 0.7 * total_cpu_memory:
|
|
|
|
raise ValueError("Too large swap space. " + msg)
|
|
|
|
elif cpu_memory_usage > 0.4 * total_cpu_memory:
|
2024-04-26 16:16:58 +09:00
|
|
|
logger.warning("Possibly too large swap space. %s", msg)
|
2023-05-23 18:22:26 -07:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-03-15 16:37:01 -07:00
|
|
|
@dataclass
|
|
|
|
class TokenizerPoolConfig:
|
|
|
|
"""Configuration for the tokenizer pool.
|
2024-04-16 08:54:57 +03:00
|
|
|
|
2024-03-15 16:37:01 -07:00
|
|
|
Args:
|
|
|
|
pool_size: Number of tokenizer workers in the pool.
|
|
|
|
pool_type: Type of the pool.
|
|
|
|
extra_config: Additional config for the pool.
|
|
|
|
The way the config will be used depends on the
|
|
|
|
pool type.
|
|
|
|
"""
|
|
|
|
pool_size: int
|
|
|
|
pool_type: str
|
|
|
|
extra_config: dict
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
if self.pool_type not in ("ray", ):
|
|
|
|
raise ValueError(f"Unknown pool type: {self.pool_type}")
|
|
|
|
if not isinstance(self.extra_config, dict):
|
|
|
|
raise ValueError("extra_config must be a dictionary.")
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def create_config(
|
|
|
|
cls, tokenizer_pool_size: int, tokenizer_pool_type: str,
|
|
|
|
tokenizer_pool_extra_config: Optional[Union[str, dict]]
|
|
|
|
) -> Optional["TokenizerPoolConfig"]:
|
|
|
|
"""Create a TokenizerPoolConfig from the given parameters.
|
2024-04-16 08:54:57 +03:00
|
|
|
|
2024-03-15 16:37:01 -07:00
|
|
|
If tokenizer_pool_size is 0, return None.
|
2024-04-16 08:54:57 +03:00
|
|
|
|
2024-03-15 16:37:01 -07:00
|
|
|
Args:
|
|
|
|
tokenizer_pool_size: Number of tokenizer workers in the pool.
|
|
|
|
tokenizer_pool_type: Type of the pool.
|
|
|
|
tokenizer_pool_extra_config: Additional config for the pool.
|
|
|
|
The way the config will be used depends on the
|
|
|
|
pool type. This can be a JSON string (will be parsed).
|
|
|
|
"""
|
|
|
|
if tokenizer_pool_size:
|
|
|
|
if isinstance(tokenizer_pool_extra_config, str):
|
|
|
|
tokenizer_pool_extra_config_parsed = json.loads(
|
|
|
|
tokenizer_pool_extra_config)
|
|
|
|
else:
|
|
|
|
tokenizer_pool_extra_config_parsed = (
|
|
|
|
tokenizer_pool_extra_config or {})
|
|
|
|
tokenizer_pool_config = cls(tokenizer_pool_size,
|
|
|
|
tokenizer_pool_type,
|
|
|
|
tokenizer_pool_extra_config_parsed)
|
|
|
|
else:
|
|
|
|
tokenizer_pool_config = None
|
|
|
|
return tokenizer_pool_config
|
|
|
|
|
|
|
|
|
2024-04-16 11:34:39 -07:00
|
|
|
class LoadFormat(str, enum.Enum):
|
|
|
|
AUTO = "auto"
|
|
|
|
PT = "pt"
|
|
|
|
SAFETENSORS = "safetensors"
|
|
|
|
NPCACHE = "npcache"
|
|
|
|
DUMMY = "dummy"
|
|
|
|
TENSORIZER = "tensorizer"
|
2024-05-16 01:11:54 -04:00
|
|
|
SHARDED_STATE = "sharded_state"
|
2024-04-16 11:34:39 -07:00
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class LoadConfig:
|
|
|
|
"""
|
|
|
|
download_dir: Directory to download and load the weights, default to the
|
|
|
|
default cache directory of huggingface.
|
|
|
|
load_format: The format of the model weights to load:
|
|
|
|
"auto" will try to load the weights in the safetensors format and
|
|
|
|
fall back to the pytorch bin format if safetensors format is
|
|
|
|
not available.
|
|
|
|
"pt" will load the weights in the pytorch bin format.
|
|
|
|
"safetensors" will load the weights in the safetensors format.
|
|
|
|
"npcache" will load the weights in pytorch format and store
|
|
|
|
a numpy cache to speed up the loading.
|
|
|
|
"dummy" will initialize the weights with random values, which is
|
|
|
|
mainly for profiling.
|
|
|
|
"tensorizer" will use CoreWeave's tensorizer library for
|
|
|
|
fast weight loading.
|
|
|
|
"""
|
|
|
|
|
|
|
|
load_format: Union[str, LoadFormat, "BaseModelLoader"] = LoadFormat.AUTO
|
|
|
|
download_dir: Optional[str] = None
|
|
|
|
model_loader_extra_config: Optional[Union[str, dict]] = field(
|
|
|
|
default_factory=dict)
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
model_loader_extra_config = self.model_loader_extra_config or {}
|
|
|
|
if isinstance(model_loader_extra_config, str):
|
|
|
|
self.model_loader_extra_config = json.loads(
|
|
|
|
model_loader_extra_config)
|
|
|
|
self._verify_load_format()
|
|
|
|
|
|
|
|
def _verify_load_format(self) -> None:
|
|
|
|
if not isinstance(self.load_format, str):
|
|
|
|
return
|
|
|
|
|
|
|
|
load_format = self.load_format.lower()
|
|
|
|
self.load_format = LoadFormat(load_format)
|
|
|
|
|
|
|
|
rocm_not_supported_load_format: List[str] = []
|
|
|
|
if is_hip() and load_format in rocm_not_supported_load_format:
|
|
|
|
rocm_supported_load_format = [
|
|
|
|
f for f in LoadFormat.__members__
|
|
|
|
if (f not in rocm_not_supported_load_format)
|
|
|
|
]
|
|
|
|
raise ValueError(
|
|
|
|
f"load format '{load_format}' is not supported in ROCm. "
|
|
|
|
f"Supported load formats are "
|
|
|
|
f"{rocm_supported_load_format}")
|
|
|
|
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
class ParallelConfig:
|
2023-06-07 18:25:20 +08:00
|
|
|
"""Configuration for the distributed execution.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
pipeline_parallel_size: Number of pipeline parallel groups.
|
|
|
|
tensor_parallel_size: Number of tensor parallel groups.
|
2024-05-14 10:38:59 -07:00
|
|
|
worker_use_ray: Deprecated, use distributed_executor_backend instead.
|
2024-02-01 02:09:23 +08:00
|
|
|
max_parallel_loading_workers: Maximum number of multiple batches
|
|
|
|
when load model sequentially. To avoid RAM OOM when using tensor
|
|
|
|
parallel and large models.
|
2024-01-28 04:46:35 +08:00
|
|
|
disable_custom_all_reduce: Disable the custom all-reduce kernel and
|
|
|
|
fall back to NCCL.
|
2024-03-15 16:37:01 -07:00
|
|
|
tokenizer_pool_config: Config for the tokenizer pool.
|
|
|
|
If None, will use synchronous tokenization.
|
2024-03-03 16:19:13 -08:00
|
|
|
ray_workers_use_nsight: Whether to profile Ray workers with nsight, see
|
|
|
|
https://docs.ray.io/en/latest/ray-observability/user-guides/profiling.html#profiling-nsight-profiler.
|
2024-05-15 07:22:09 -07:00
|
|
|
placement_group: ray distributed model workers placement group.
|
2024-05-14 10:38:59 -07:00
|
|
|
distributed_executor_backend: Backend to use for distributed model
|
|
|
|
workers, either "ray" or "mp" (multiprocessing). If either
|
|
|
|
pipeline_parallel_size or tensor_parallel_size is greater than 1,
|
|
|
|
will default to "ray" if Ray is installed or "mp" otherwise.
|
2023-06-07 18:25:20 +08:00
|
|
|
"""
|
2023-07-03 11:31:55 -07:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
pipeline_parallel_size: int,
|
|
|
|
tensor_parallel_size: int,
|
2024-05-14 10:38:59 -07:00
|
|
|
worker_use_ray: Optional[bool] = None,
|
2023-11-21 11:02:42 +08:00
|
|
|
max_parallel_loading_workers: Optional[int] = None,
|
2024-01-28 04:46:35 +08:00
|
|
|
disable_custom_all_reduce: bool = False,
|
2024-03-15 16:37:01 -07:00
|
|
|
tokenizer_pool_config: Optional[TokenizerPoolConfig] = None,
|
2024-03-03 16:19:13 -08:00
|
|
|
ray_workers_use_nsight: bool = False,
|
2024-03-11 11:03:45 -07:00
|
|
|
placement_group: Optional["PlacementGroup"] = None,
|
2024-05-14 10:38:59 -07:00
|
|
|
distributed_executor_backend: Optional[str] = None,
|
2023-05-20 13:06:59 -07:00
|
|
|
) -> None:
|
|
|
|
self.pipeline_parallel_size = pipeline_parallel_size
|
2024-03-21 18:22:17 -07:00
|
|
|
self.tensor_parallel_size = tensor_parallel_size
|
2024-05-14 10:38:59 -07:00
|
|
|
self.distributed_executor_backend = distributed_executor_backend
|
2023-11-21 11:02:42 +08:00
|
|
|
self.max_parallel_loading_workers = max_parallel_loading_workers
|
2024-01-28 04:46:35 +08:00
|
|
|
self.disable_custom_all_reduce = disable_custom_all_reduce
|
2024-03-15 16:37:01 -07:00
|
|
|
self.tokenizer_pool_config = tokenizer_pool_config
|
2024-03-03 16:19:13 -08:00
|
|
|
self.ray_workers_use_nsight = ray_workers_use_nsight
|
2024-03-11 11:03:45 -07:00
|
|
|
self.placement_group = placement_group
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-02-28 09:34:34 -08:00
|
|
|
self.world_size = pipeline_parallel_size * self.tensor_parallel_size
|
2024-05-14 10:38:59 -07:00
|
|
|
if worker_use_ray:
|
|
|
|
if self.distributed_executor_backend is None:
|
|
|
|
self.distributed_executor_backend = "ray"
|
|
|
|
elif self.distributed_executor_backend != "ray":
|
|
|
|
raise ValueError(f"worker-use-ray can't be used with "
|
|
|
|
f"distributed executor backend "
|
|
|
|
f"'{self.distributed_executor_backend}'.")
|
|
|
|
|
|
|
|
if self.distributed_executor_backend is None and self.world_size > 1:
|
|
|
|
from vllm.executor import ray_utils
|
|
|
|
ray_found = ray_utils.ray is not None
|
|
|
|
self.distributed_executor_backend = "ray" if ray_found else "mp"
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
self._verify_args()
|
|
|
|
|
|
|
|
def _verify_args(self) -> None:
|
|
|
|
if self.pipeline_parallel_size > 1:
|
|
|
|
raise NotImplementedError(
|
|
|
|
"Pipeline parallelism is not supported yet.")
|
2024-05-14 10:38:59 -07:00
|
|
|
if self.distributed_executor_backend not in ("ray", "mp", None):
|
|
|
|
raise ValueError(
|
|
|
|
"Unrecognized distributed executor backend. Supported values "
|
|
|
|
"are 'ray' or 'mp'.")
|
2024-02-08 09:58:03 -08:00
|
|
|
if not self.disable_custom_all_reduce and self.world_size > 1:
|
|
|
|
if is_hip():
|
|
|
|
self.disable_custom_all_reduce = True
|
|
|
|
logger.info(
|
|
|
|
"Disabled the custom all-reduce kernel because it is not "
|
|
|
|
"supported on AMD GPUs.")
|
|
|
|
elif self.pipeline_parallel_size > 1:
|
|
|
|
self.disable_custom_all_reduce = True
|
|
|
|
logger.info(
|
|
|
|
"Disabled the custom all-reduce kernel because it is not "
|
|
|
|
"supported with pipeline parallelism.")
|
2024-05-14 10:38:59 -07:00
|
|
|
if self.ray_workers_use_nsight and (
|
|
|
|
not self.distributed_executor_backend == "ray"):
|
2024-03-03 16:19:13 -08:00
|
|
|
raise ValueError("Unable to use nsight profiling unless workers "
|
|
|
|
"run with Ray.")
|
2024-02-08 09:58:03 -08:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
class SchedulerConfig:
|
2023-06-07 18:25:20 +08:00
|
|
|
"""Scheduler configuration.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
max_num_batched_tokens: Maximum number of tokens to be processed in
|
|
|
|
a single iteration.
|
|
|
|
max_num_seqs: Maximum number of sequences to be processed in a single
|
|
|
|
iteration.
|
2023-08-01 04:11:57 +08:00
|
|
|
max_model_len: Maximum length of a sequence (including prompt
|
2023-06-30 18:48:49 -07:00
|
|
|
and generated text).
|
2024-04-01 15:55:24 -07:00
|
|
|
use_v2_block_manager: Whether to use the BlockSpaceManagerV2 or not.
|
|
|
|
num_lookahead_slots: The number of slots to allocate per sequence per
|
|
|
|
step, beyond the known token ids. This is used in speculative
|
|
|
|
decoding to store KV activations of tokens which may or may not be
|
|
|
|
accepted.
|
2024-03-22 20:28:14 +01:00
|
|
|
delay_factor: Apply a delay (of delay factor multiplied by previous
|
|
|
|
prompt latency) before scheduling next prompt.
|
2024-03-29 02:06:01 +09:00
|
|
|
enable_chunked_prefill: If True, prefill requests can be chunked based
|
|
|
|
on the remaining max_num_batched_tokens.
|
2024-05-11 11:30:37 -07:00
|
|
|
embedding_mode: Whether the running model is for embedding.
|
2023-06-07 18:25:20 +08:00
|
|
|
"""
|
2023-07-03 11:31:55 -07:00
|
|
|
|
2023-09-27 16:34:00 -07:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
max_num_batched_tokens: Optional[int],
|
|
|
|
max_num_seqs: int,
|
|
|
|
max_model_len: int,
|
2024-03-27 23:59:28 -07:00
|
|
|
use_v2_block_manager: bool = False,
|
2024-04-01 15:55:24 -07:00
|
|
|
num_lookahead_slots: int = 0,
|
2024-03-22 20:28:14 +01:00
|
|
|
delay_factor: float = 0.0,
|
2024-03-29 02:06:01 +09:00
|
|
|
enable_chunked_prefill: bool = False,
|
2024-05-11 11:30:37 -07:00
|
|
|
embedding_mode: Optional[bool] = False,
|
2023-09-27 16:34:00 -07:00
|
|
|
) -> None:
|
|
|
|
if max_num_batched_tokens is not None:
|
|
|
|
self.max_num_batched_tokens = max_num_batched_tokens
|
|
|
|
else:
|
2024-04-11 09:56:48 +09:00
|
|
|
if enable_chunked_prefill:
|
2024-05-04 16:18:00 +09:00
|
|
|
# It is the values that have the best balance between ITL
|
|
|
|
# and TTFT on A100. Note it is not optimized for throughput.
|
|
|
|
self.max_num_batched_tokens = 512
|
2024-05-11 11:30:37 -07:00
|
|
|
elif embedding_mode:
|
|
|
|
# For embedding, choose specific value for higher throughput
|
|
|
|
self.max_num_batched_tokens = max(
|
|
|
|
max_model_len, _EMBEDDING_MODEL_MAX_NUM_BATCHED_TOKENS)
|
2024-04-11 09:56:48 +09:00
|
|
|
else:
|
|
|
|
# If max_model_len is too short, use 2048 as the default value
|
|
|
|
# for higher throughput.
|
|
|
|
self.max_num_batched_tokens = max(max_model_len, 2048)
|
|
|
|
if enable_chunked_prefill:
|
|
|
|
logger.info("Chunked prefill is enabled (EXPERIMENTAL).")
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
self.max_num_seqs = max_num_seqs
|
2023-07-17 23:20:20 -07:00
|
|
|
self.max_model_len = max_model_len
|
2024-03-27 23:59:28 -07:00
|
|
|
self.use_v2_block_manager = use_v2_block_manager
|
2024-04-01 15:55:24 -07:00
|
|
|
self.num_lookahead_slots = num_lookahead_slots
|
|
|
|
self.delay_factor = delay_factor
|
2024-03-29 02:06:01 +09:00
|
|
|
self.chunked_prefill_enabled = enable_chunked_prefill
|
2024-05-11 11:30:37 -07:00
|
|
|
self.embedding_mode = embedding_mode
|
2024-04-01 15:55:24 -07:00
|
|
|
|
2023-09-27 16:34:00 -07:00
|
|
|
self._verify_args()
|
|
|
|
|
|
|
|
def _verify_args(self) -> None:
|
2024-04-06 02:17:58 +09:00
|
|
|
if (self.max_num_batched_tokens < self.max_model_len
|
|
|
|
and not self.chunked_prefill_enabled):
|
2023-09-27 16:34:00 -07:00
|
|
|
raise ValueError(
|
|
|
|
f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
|
|
|
|
f"smaller than max_model_len ({self.max_model_len}). "
|
|
|
|
"This effectively limits the maximum sequence length to "
|
|
|
|
"max_num_batched_tokens and makes vLLM reject longer "
|
|
|
|
"sequences. Please increase max_num_batched_tokens or "
|
|
|
|
"decrease max_model_len.")
|
2024-04-01 15:55:24 -07:00
|
|
|
|
2023-09-27 16:34:00 -07:00
|
|
|
if self.max_num_batched_tokens < self.max_num_seqs:
|
|
|
|
raise ValueError(
|
|
|
|
f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
|
|
|
|
"be greater than or equal to max_num_seqs "
|
|
|
|
f"({self.max_num_seqs}).")
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-04-01 15:55:24 -07:00
|
|
|
if self.num_lookahead_slots < 0:
|
|
|
|
raise ValueError(
|
|
|
|
"num_lookahead_slots "
|
|
|
|
f"({self.num_lookahead_slots}) must be greater than or "
|
|
|
|
"equal to 0.")
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
|
2024-02-02 07:46:39 +08:00
|
|
|
class DeviceConfig:
|
|
|
|
|
2024-02-28 09:34:34 -08:00
|
|
|
def __init__(self, device: str = "auto") -> None:
|
|
|
|
if device == "auto":
|
|
|
|
# Automated device type detection
|
2024-03-18 23:05:20 -07:00
|
|
|
if is_neuron():
|
2024-02-28 09:34:34 -08:00
|
|
|
self.device_type = "neuron"
|
2024-04-02 13:07:30 +08:00
|
|
|
elif is_cpu():
|
|
|
|
self.device_type = "cpu"
|
2024-02-28 09:34:34 -08:00
|
|
|
else:
|
2024-03-18 23:05:20 -07:00
|
|
|
# We don't call torch.cuda.is_available() here to
|
|
|
|
# avoid initializing CUDA before workers are forked
|
|
|
|
self.device_type = "cuda"
|
2024-02-28 09:34:34 -08:00
|
|
|
else:
|
|
|
|
# Device type is assigned explicitly
|
|
|
|
self.device_type = device
|
|
|
|
|
|
|
|
# Some device types require processing inputs on CPU
|
|
|
|
if self.device_type in ["neuron"]:
|
|
|
|
self.device = torch.device("cpu")
|
|
|
|
else:
|
|
|
|
# Set device with device type
|
|
|
|
self.device = torch.device(self.device_type)
|
|
|
|
|
2024-02-02 07:46:39 +08:00
|
|
|
|
2024-04-02 17:40:57 -07:00
|
|
|
class SpeculativeConfig:
|
|
|
|
"""Configuration for speculative decoding.
|
|
|
|
|
|
|
|
The configuration is currently specialized to draft-model speculative
|
|
|
|
decoding with top-1 proposals.
|
|
|
|
"""
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def maybe_create_spec_config(
|
|
|
|
target_model_config: ModelConfig,
|
|
|
|
target_parallel_config: ParallelConfig,
|
|
|
|
target_dtype: str,
|
|
|
|
speculative_model: Optional[str],
|
|
|
|
num_speculative_tokens: Optional[int],
|
2024-04-23 01:02:36 -07:00
|
|
|
speculative_max_model_len: Optional[int],
|
|
|
|
enable_chunked_prefill: bool,
|
|
|
|
use_v2_block_manager: bool,
|
2024-05-08 14:44:00 -07:00
|
|
|
speculative_disable_by_batch_size: Optional[int],
|
2024-05-02 02:13:03 +08:00
|
|
|
ngram_prompt_lookup_max: Optional[int],
|
|
|
|
ngram_prompt_lookup_min: Optional[int],
|
2024-04-02 17:40:57 -07:00
|
|
|
) -> Optional["SpeculativeConfig"]:
|
|
|
|
"""Create a SpeculativeConfig if possible, else return None.
|
|
|
|
|
|
|
|
This function attempts to create a SpeculativeConfig object based on the
|
|
|
|
provided parameters. If the necessary conditions are met, it returns an
|
|
|
|
instance of SpeculativeConfig. Otherwise, it returns None.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
target_model_config (ModelConfig): The configuration of the target
|
|
|
|
model.
|
|
|
|
target_parallel_config (ParallelConfig): The parallel configuration
|
|
|
|
for the target model.
|
|
|
|
target_dtype (str): The data type used for the target model.
|
|
|
|
speculative_model (Optional[str]): The name of the speculative
|
|
|
|
model, if provided.
|
|
|
|
num_speculative_tokens (Optional[int]): The number of speculative
|
|
|
|
tokens, if provided.
|
2024-04-23 01:02:36 -07:00
|
|
|
speculative_max_model_len (Optional[int]): The maximum model len of
|
|
|
|
the speculative model. Used when testing the ability to skip
|
|
|
|
speculation for some sequences.
|
|
|
|
enable_chunked_prefill (bool): Whether vLLM is configured to use
|
|
|
|
chunked prefill or not. Used for raising an error since its not
|
|
|
|
yet compatible with spec decode.
|
|
|
|
use_v2_block_manager (bool): Whether vLLM is configured to use the
|
|
|
|
v2 block manager or not. Used for raising an error since the v2
|
|
|
|
block manager is required with spec decode.
|
2024-05-08 14:44:00 -07:00
|
|
|
speculative_disable_by_batch_size (Optional[int]): Disable
|
|
|
|
speculative decoding for new incoming requests when the number
|
|
|
|
of enqueue requests is larger than this value, if provided.
|
2024-05-02 02:13:03 +08:00
|
|
|
ngram_prompt_lookup_max (Optional[int]): Max size of ngram token
|
|
|
|
window, if provided.
|
|
|
|
ngram_prompt_lookup_min (Optional[int]): Min size of ngram token
|
|
|
|
window, if provided.
|
2024-04-02 17:40:57 -07:00
|
|
|
|
|
|
|
Returns:
|
|
|
|
Optional["SpeculativeConfig"]: An instance of SpeculativeConfig if
|
|
|
|
the necessary conditions are met, else None.
|
|
|
|
"""
|
|
|
|
|
2024-05-08 14:44:00 -07:00
|
|
|
if speculative_model is None and num_speculative_tokens is None:
|
2024-04-02 17:40:57 -07:00
|
|
|
return None
|
|
|
|
|
|
|
|
if speculative_model is not None and num_speculative_tokens is None:
|
|
|
|
raise ValueError(
|
|
|
|
"Expected both speculative_model and "
|
|
|
|
"num_speculative_tokens to be provided, but found "
|
|
|
|
f"{speculative_model=} and {num_speculative_tokens=}.")
|
|
|
|
|
2024-05-08 14:44:00 -07:00
|
|
|
if (speculative_disable_by_batch_size is not None
|
|
|
|
and speculative_disable_by_batch_size < 2):
|
|
|
|
raise ValueError("Expect the batch size threshold of disabling "
|
|
|
|
"speculative decoding is > 1, but got "
|
|
|
|
f"{speculative_disable_by_batch_size=}")
|
|
|
|
|
2024-04-13 06:35:50 +09:00
|
|
|
assert (speculative_model is not None
|
|
|
|
and num_speculative_tokens is not None)
|
|
|
|
|
2024-04-23 01:02:36 -07:00
|
|
|
if enable_chunked_prefill:
|
|
|
|
raise ValueError(
|
|
|
|
"Speculative decoding and chunked prefill are "
|
|
|
|
f"currently mutually exclusive ({enable_chunked_prefill=}).")
|
|
|
|
|
|
|
|
if not use_v2_block_manager:
|
|
|
|
raise ValueError(
|
|
|
|
"Speculative decoding requires usage of the V2 "
|
|
|
|
"block manager. Enable it with --use-v2-block-manager.")
|
|
|
|
|
2024-04-02 17:40:57 -07:00
|
|
|
# TODO: The user should be able to specify revision/quantization/max
|
|
|
|
# model len for the draft model. It is not currently supported.
|
|
|
|
draft_revision = None
|
|
|
|
draft_code_revision = None
|
|
|
|
draft_quantization = None
|
|
|
|
|
2024-05-02 02:13:03 +08:00
|
|
|
if speculative_model == "[ngram]":
|
|
|
|
if ngram_prompt_lookup_min is None:
|
2024-05-13 15:00:13 -07:00
|
|
|
ngram_prompt_lookup_min = 1
|
|
|
|
if ngram_prompt_lookup_max is None or ngram_prompt_lookup_max < 1:
|
|
|
|
raise ValueError(f"{ngram_prompt_lookup_max=} must be > 0")
|
|
|
|
if ngram_prompt_lookup_min < 1:
|
|
|
|
raise ValueError(f"{ngram_prompt_lookup_min=} must be > 0")
|
|
|
|
if ngram_prompt_lookup_min > ngram_prompt_lookup_max:
|
|
|
|
raise ValueError(f"{ngram_prompt_lookup_min=} cannot be "
|
|
|
|
f"larger than {ngram_prompt_lookup_max=}")
|
2024-04-23 01:02:36 -07:00
|
|
|
|
2024-05-02 02:13:03 +08:00
|
|
|
# TODO: current we still need extract vocab_size from target model
|
|
|
|
# config, in future, we may try refactor it out, and set
|
|
|
|
# draft related config as None here.
|
|
|
|
draft_model_config = target_model_config
|
|
|
|
draft_parallel_config = target_parallel_config
|
|
|
|
else:
|
|
|
|
ngram_prompt_lookup_max = 0
|
|
|
|
ngram_prompt_lookup_min = 0
|
|
|
|
draft_model_config = ModelConfig(
|
|
|
|
model=speculative_model,
|
|
|
|
tokenizer=target_model_config.tokenizer,
|
|
|
|
tokenizer_mode=target_model_config.tokenizer_mode,
|
|
|
|
trust_remote_code=target_model_config.trust_remote_code,
|
|
|
|
dtype=target_model_config.dtype,
|
|
|
|
seed=target_model_config.seed,
|
|
|
|
revision=draft_revision,
|
|
|
|
code_revision=draft_code_revision,
|
|
|
|
tokenizer_revision=target_model_config.tokenizer_revision,
|
|
|
|
max_model_len=None,
|
|
|
|
quantization=draft_quantization,
|
|
|
|
enforce_eager=target_model_config.enforce_eager,
|
2024-05-04 02:20:12 +09:00
|
|
|
max_seq_len_to_capture=target_model_config.
|
|
|
|
max_seq_len_to_capture,
|
2024-05-02 02:13:03 +08:00
|
|
|
max_logprobs=target_model_config.max_logprobs,
|
|
|
|
)
|
|
|
|
|
|
|
|
draft_model_config.max_model_len = (
|
|
|
|
SpeculativeConfig._maybe_override_draft_max_model_len(
|
|
|
|
speculative_max_model_len,
|
|
|
|
draft_model_config.max_model_len,
|
|
|
|
target_model_config.max_model_len,
|
|
|
|
))
|
|
|
|
|
|
|
|
draft_parallel_config = (
|
|
|
|
SpeculativeConfig.create_draft_parallel_config(
|
|
|
|
target_parallel_config))
|
2024-04-02 17:40:57 -07:00
|
|
|
|
|
|
|
return SpeculativeConfig(
|
|
|
|
draft_model_config,
|
|
|
|
draft_parallel_config,
|
|
|
|
num_speculative_tokens,
|
2024-05-08 14:44:00 -07:00
|
|
|
speculative_disable_by_batch_size,
|
2024-05-02 02:13:03 +08:00
|
|
|
ngram_prompt_lookup_max,
|
|
|
|
ngram_prompt_lookup_min,
|
2024-04-02 17:40:57 -07:00
|
|
|
)
|
|
|
|
|
2024-04-23 01:02:36 -07:00
|
|
|
@staticmethod
|
|
|
|
def _maybe_override_draft_max_model_len(
|
|
|
|
speculative_max_model_len: Optional[int],
|
|
|
|
draft_max_model_len: int,
|
|
|
|
target_max_model_len: int,
|
|
|
|
) -> int:
|
|
|
|
"""Determine the max sequence len for the draft model. This is usually
|
|
|
|
the draft_max_model_len, but may be the target_max_model_len if it is
|
|
|
|
less than the draft_max_model_len, or may be speculative_max_model_len
|
|
|
|
if it is specified.
|
|
|
|
|
|
|
|
This is necessary so that sequences do not exceed the capacity of the
|
|
|
|
draft model or the target model.
|
|
|
|
|
|
|
|
speculative_max_model_len is mainly used for testing that sequences can
|
|
|
|
skip speculation.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if speculative_max_model_len is not None:
|
|
|
|
|
|
|
|
if speculative_max_model_len > draft_max_model_len:
|
|
|
|
raise ValueError(f"{speculative_max_model_len=} cannot be "
|
|
|
|
f"larger than {draft_max_model_len=}")
|
|
|
|
|
|
|
|
if speculative_max_model_len > target_max_model_len:
|
|
|
|
raise ValueError(f"{speculative_max_model_len=} cannot be "
|
|
|
|
f"larger than {target_max_model_len=}")
|
|
|
|
|
|
|
|
return speculative_max_model_len
|
|
|
|
|
|
|
|
return min(
|
|
|
|
draft_max_model_len,
|
|
|
|
target_max_model_len,
|
|
|
|
)
|
|
|
|
|
2024-04-02 17:40:57 -07:00
|
|
|
@staticmethod
|
|
|
|
def create_draft_parallel_config(
|
|
|
|
target_parallel_config: ParallelConfig) -> ParallelConfig:
|
|
|
|
"""Create a parallel config for use by the draft worker.
|
|
|
|
|
|
|
|
This is mostly a copy of the target parallel config. In the future the
|
|
|
|
draft worker can have a different parallel strategy, e.g. TP=1.
|
|
|
|
"""
|
|
|
|
draft_parallel_config = ParallelConfig(
|
|
|
|
pipeline_parallel_size=target_parallel_config.
|
|
|
|
pipeline_parallel_size,
|
|
|
|
tensor_parallel_size=target_parallel_config.tensor_parallel_size,
|
2024-05-14 10:38:59 -07:00
|
|
|
distributed_executor_backend=target_parallel_config.
|
|
|
|
distributed_executor_backend,
|
2024-04-02 17:40:57 -07:00
|
|
|
max_parallel_loading_workers=target_parallel_config.
|
|
|
|
max_parallel_loading_workers,
|
|
|
|
disable_custom_all_reduce=target_parallel_config.
|
|
|
|
disable_custom_all_reduce,
|
|
|
|
tokenizer_pool_config=target_parallel_config.tokenizer_pool_config,
|
|
|
|
ray_workers_use_nsight=target_parallel_config.
|
|
|
|
ray_workers_use_nsight,
|
|
|
|
placement_group=target_parallel_config.placement_group,
|
|
|
|
)
|
|
|
|
|
|
|
|
return draft_parallel_config
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
draft_model_config: ModelConfig,
|
|
|
|
draft_parallel_config: ParallelConfig,
|
|
|
|
num_speculative_tokens: int,
|
2024-05-08 14:44:00 -07:00
|
|
|
speculative_disable_by_batch_size: Optional[int],
|
|
|
|
ngram_prompt_lookup_max: Optional[int],
|
|
|
|
ngram_prompt_lookup_min: Optional[int],
|
2024-04-02 17:40:57 -07:00
|
|
|
):
|
|
|
|
"""Create a SpeculativeConfig object.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
draft_model_config: ModelConfig for the draft model.
|
|
|
|
draft_parallel_config: ParallelConfig for the draft model.
|
|
|
|
num_speculative_tokens: The number of tokens to sample from the
|
|
|
|
draft model before scoring with the target model.
|
2024-05-08 14:44:00 -07:00
|
|
|
speculative_disable_by_batch_size: Disable speculative
|
|
|
|
decoding for new incoming requests when the number of
|
|
|
|
enqueue requests is larger than this value.
|
|
|
|
ngram_prompt_lookup_max: Max size of ngram token window.
|
|
|
|
ngram_prompt_lookup_min: Min size of ngram token window.
|
2024-04-02 17:40:57 -07:00
|
|
|
"""
|
|
|
|
self.draft_model_config = draft_model_config
|
|
|
|
self.draft_parallel_config = draft_parallel_config
|
|
|
|
self.num_speculative_tokens = num_speculative_tokens
|
2024-05-08 14:44:00 -07:00
|
|
|
self.speculative_disable_by_batch_size = \
|
|
|
|
speculative_disable_by_batch_size
|
|
|
|
self.ngram_prompt_lookup_max = ngram_prompt_lookup_max or 0
|
|
|
|
self.ngram_prompt_lookup_min = ngram_prompt_lookup_min or 0
|
2024-04-02 17:40:57 -07:00
|
|
|
|
|
|
|
self._verify_args()
|
|
|
|
|
|
|
|
def _verify_args(self) -> None:
|
|
|
|
if self.num_speculative_tokens <= 0:
|
|
|
|
raise ValueError("Expected num_speculative_tokens to be greater "
|
|
|
|
f"than zero ({self.num_speculative_tokens}).")
|
|
|
|
|
|
|
|
if self.draft_model_config:
|
|
|
|
self.draft_model_config.verify_with_parallel_config(
|
|
|
|
self.draft_parallel_config)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def num_lookahead_slots(self) -> int:
|
|
|
|
"""The number of additional slots the scheduler should allocate per
|
|
|
|
step, in addition to the slots allocated for each known token.
|
|
|
|
|
|
|
|
This is equal to the number of speculative tokens, as each speculative
|
|
|
|
token must be scored.
|
|
|
|
"""
|
|
|
|
return self.num_speculative_tokens
|
|
|
|
|
|
|
|
def __repr__(self) -> str:
|
2024-05-02 02:13:03 +08:00
|
|
|
if self.ngram_prompt_lookup_max > 0:
|
|
|
|
draft_model = "[ngram]"
|
|
|
|
else:
|
|
|
|
draft_model = self.draft_model_config.model
|
2024-04-02 17:40:57 -07:00
|
|
|
num_spec_tokens = self.num_speculative_tokens
|
|
|
|
return f"SpeculativeConfig({draft_model=}, {num_spec_tokens=})"
|
|
|
|
|
|
|
|
|
2024-01-24 00:26:37 +01:00
|
|
|
@dataclass
|
|
|
|
class LoRAConfig:
|
|
|
|
max_lora_rank: int
|
|
|
|
max_loras: int
|
2024-04-27 02:03:48 -05:00
|
|
|
fully_sharded_loras: bool = False
|
2024-01-24 00:26:37 +01:00
|
|
|
max_cpu_loras: Optional[int] = None
|
|
|
|
lora_dtype: Optional[torch.dtype] = None
|
|
|
|
lora_extra_vocab_size: int = 256
|
|
|
|
# This is a constant.
|
|
|
|
lora_vocab_padding_size: ClassVar[int] = 256
|
2024-05-18 16:05:23 +09:00
|
|
|
long_lora_scaling_factors: Optional[Tuple[float]] = None
|
2024-01-24 00:26:37 +01:00
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
# Keep this in sync with csrc/punica/bgmv/bgmv_config.h
|
|
|
|
possible_max_ranks = (8, 16, 32, 64)
|
|
|
|
possible_lora_extra_vocab_size = (0, 256, 512)
|
|
|
|
if self.max_lora_rank not in possible_max_ranks:
|
|
|
|
raise ValueError(
|
|
|
|
f"max_lora_rank ({self.max_lora_rank}) must be one of "
|
|
|
|
f"{possible_max_ranks}.")
|
|
|
|
if self.lora_extra_vocab_size not in possible_lora_extra_vocab_size:
|
|
|
|
raise ValueError(
|
|
|
|
f"lora_extra_vocab_size ({self.lora_extra_vocab_size}) "
|
|
|
|
f"must be one of {possible_lora_extra_vocab_size}.")
|
|
|
|
if self.max_loras < 1:
|
|
|
|
raise ValueError(f"max_loras ({self.max_loras}) must be >= 1.")
|
|
|
|
if self.max_cpu_loras is None:
|
|
|
|
self.max_cpu_loras = self.max_loras
|
|
|
|
elif self.max_cpu_loras < self.max_loras:
|
|
|
|
raise ValueError(
|
|
|
|
f"max_cpu_loras ({self.max_cpu_loras}) must be >= "
|
2024-02-01 02:09:23 +08:00
|
|
|
f"max_loras ({self.max_loras})")
|
2024-01-24 00:26:37 +01:00
|
|
|
|
|
|
|
def verify_with_model_config(self, model_config: ModelConfig):
|
|
|
|
if self.lora_dtype in (None, "auto"):
|
|
|
|
self.lora_dtype = model_config.dtype
|
|
|
|
elif isinstance(self.lora_dtype, str):
|
|
|
|
self.lora_dtype = getattr(torch, self.lora_dtype)
|
2024-04-12 12:02:44 +08:00
|
|
|
if model_config.quantization and model_config.quantization not in [
|
|
|
|
"awq", "gptq"
|
|
|
|
]:
|
|
|
|
# TODO support marlin and squeezellm
|
2024-04-26 16:16:58 +09:00
|
|
|
logger.warning("%s quantization is not tested with LoRA yet.",
|
|
|
|
model_config.quantization)
|
2024-01-24 00:26:37 +01:00
|
|
|
|
|
|
|
def verify_with_scheduler_config(self, scheduler_config: SchedulerConfig):
|
|
|
|
if scheduler_config.max_num_batched_tokens > 65528:
|
|
|
|
raise ValueError(
|
|
|
|
"Due to limitations of the custom LoRA CUDA kernel, "
|
|
|
|
"max_num_batched_tokens must be <= 65528 when "
|
|
|
|
"LoRA is enabled.")
|
|
|
|
|
|
|
|
|
2024-03-25 14:16:30 -07:00
|
|
|
@dataclass
|
|
|
|
class VisionLanguageConfig:
|
|
|
|
"""Configs the input data format and how models should run for
|
|
|
|
vision language models."""
|
|
|
|
|
|
|
|
class ImageInputType(enum.Enum):
|
|
|
|
"""Image input type into the vision language model.
|
|
|
|
|
|
|
|
An image roughly goes through the following transformation:
|
|
|
|
Raw image --> pixel values --> image features --> image embeddings.
|
|
|
|
|
|
|
|
The difference between different image input types is where the
|
|
|
|
image encoder (pixel values --> image features) is run.
|
|
|
|
Different image input types also correspond to different tensor shapes.
|
|
|
|
|
|
|
|
For example, for Llava, PIXEL_VALUES: (1, 3, 336, 336).
|
|
|
|
IMAGE_FEATURES: (1, 576, 1024).
|
|
|
|
"""
|
|
|
|
PIXEL_VALUES = enum.auto()
|
|
|
|
IMAGE_FEATURES = enum.auto()
|
|
|
|
|
|
|
|
image_input_type: ImageInputType
|
|
|
|
# The input id corresponding to image token.
|
|
|
|
image_token_id: int
|
|
|
|
# Used for running `run_prefill_max_token`.
|
|
|
|
# For models that support varying resolution, this corresponds to
|
|
|
|
# worst case scenario (biggest supported resolution).
|
|
|
|
image_input_shape: tuple
|
|
|
|
image_feature_size: int
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_image_input_enum_type(
|
|
|
|
cls, value: str) -> "VisionLanguageConfig.ImageInputType":
|
|
|
|
"""Get the image input type from a string."""
|
|
|
|
try:
|
|
|
|
return cls.ImageInputType[value.upper()]
|
|
|
|
except KeyError as e:
|
|
|
|
raise ValueError(f"{value} is not a valid choice. "
|
|
|
|
f"Expecting to choose from "
|
|
|
|
f"{[x.name for x in cls.ImageInputType]}.") from e
|
|
|
|
|
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
_STR_DTYPE_TO_TORCH_DTYPE = {
|
|
|
|
"half": torch.float16,
|
|
|
|
"float16": torch.float16,
|
|
|
|
"float": torch.float32,
|
|
|
|
"float32": torch.float32,
|
|
|
|
"bfloat16": torch.bfloat16,
|
|
|
|
}
|
|
|
|
|
2024-05-16 22:58:25 -05:00
|
|
|
_ROCM_NOT_SUPPORTED_DTYPE: List[str] = [] #
|
2023-12-08 15:16:52 +08:00
|
|
|
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
def _get_and_verify_dtype(
|
|
|
|
config: PretrainedConfig,
|
2023-11-16 04:31:06 -05:00
|
|
|
dtype: Union[str, torch.dtype],
|
2023-05-20 13:06:59 -07:00
|
|
|
) -> torch.dtype:
|
|
|
|
# NOTE: getattr(config, "torch_dtype", torch.float32) is not correct
|
|
|
|
# because config.torch_dtype can be None.
|
|
|
|
config_dtype = getattr(config, "torch_dtype", None)
|
|
|
|
if config_dtype is None:
|
|
|
|
config_dtype = torch.float32
|
|
|
|
|
2023-11-16 04:31:06 -05:00
|
|
|
if isinstance(dtype, str):
|
|
|
|
dtype = dtype.lower()
|
|
|
|
if dtype == "auto":
|
|
|
|
if config_dtype == torch.float32:
|
|
|
|
# Following the common practice, we use float16 for float32
|
|
|
|
# models.
|
2024-05-09 14:36:25 -04:00
|
|
|
logger.info("Casting torch.float32 to torch.float16.")
|
2023-11-16 04:31:06 -05:00
|
|
|
torch_dtype = torch.float16
|
|
|
|
else:
|
|
|
|
torch_dtype = config_dtype
|
2023-05-20 13:06:59 -07:00
|
|
|
else:
|
2023-11-16 04:31:06 -05:00
|
|
|
if dtype not in _STR_DTYPE_TO_TORCH_DTYPE:
|
|
|
|
raise ValueError(f"Unknown dtype: {dtype}")
|
|
|
|
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
|
|
|
|
elif isinstance(dtype, torch.dtype):
|
|
|
|
torch_dtype = dtype
|
2023-05-20 13:06:59 -07:00
|
|
|
else:
|
2023-11-16 04:31:06 -05:00
|
|
|
raise ValueError(f"Unknown dtype: {dtype}")
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
# Verify the dtype.
|
|
|
|
if torch_dtype != config_dtype:
|
|
|
|
if torch_dtype == torch.float32:
|
|
|
|
# Upcasting to float32 is allowed.
|
2024-05-09 14:36:25 -04:00
|
|
|
logger.info("Upcasting %s to %s.", config_dtype, torch_dtype)
|
2023-05-20 13:06:59 -07:00
|
|
|
pass
|
|
|
|
elif config_dtype == torch.float32:
|
|
|
|
# Downcasting from float32 to float16 or bfloat16 is allowed.
|
2024-05-09 14:36:25 -04:00
|
|
|
logger.info("Downcasting %s to %s.", config_dtype, torch_dtype)
|
2023-05-20 13:06:59 -07:00
|
|
|
pass
|
|
|
|
else:
|
2023-06-07 00:40:21 -07:00
|
|
|
# Casting between float16 and bfloat16 is allowed with a warning.
|
2024-04-26 16:16:58 +09:00
|
|
|
logger.warning("Casting %s to %s.", config_dtype, torch_dtype)
|
2023-05-20 13:06:59 -07:00
|
|
|
|
|
|
|
return torch_dtype
|
2023-09-20 13:35:11 -07:00
|
|
|
|
|
|
|
|
|
|
|
def _get_and_verify_max_len(
|
|
|
|
hf_config: PretrainedConfig,
|
|
|
|
max_model_len: Optional[int],
|
2024-05-27 15:18:17 -07:00
|
|
|
disable_sliding_window: bool,
|
|
|
|
sliding_window_len: Optional[int],
|
2023-09-20 13:35:11 -07:00
|
|
|
) -> int:
|
|
|
|
"""Get and verify the model's maximum length."""
|
|
|
|
derived_max_model_len = float("inf")
|
|
|
|
possible_keys = [
|
|
|
|
# OPT
|
|
|
|
"max_position_embeddings",
|
|
|
|
# GPT-2
|
|
|
|
"n_positions",
|
|
|
|
# MPT
|
|
|
|
"max_seq_len",
|
2023-11-10 11:29:51 +08:00
|
|
|
# ChatGLM2
|
|
|
|
"seq_length",
|
2024-03-29 12:27:51 -07:00
|
|
|
# Command-R
|
|
|
|
"model_max_length",
|
2023-09-20 13:35:11 -07:00
|
|
|
# Others
|
|
|
|
"max_sequence_length",
|
|
|
|
"max_seq_length",
|
|
|
|
"seq_len",
|
|
|
|
]
|
2024-05-27 15:18:17 -07:00
|
|
|
# Choose the smallest "max_length" from the possible keys.
|
2024-03-29 12:27:51 -07:00
|
|
|
max_len_key = None
|
2023-09-20 13:35:11 -07:00
|
|
|
for key in possible_keys:
|
2024-03-29 12:27:51 -07:00
|
|
|
max_len = getattr(hf_config, key, None)
|
|
|
|
if max_len is not None:
|
|
|
|
max_len_key = key if max_len < derived_max_model_len \
|
|
|
|
else max_len_key
|
|
|
|
derived_max_model_len = min(derived_max_model_len, max_len)
|
2024-05-27 15:18:17 -07:00
|
|
|
|
|
|
|
# If sliding window is manually disabled, max_length should be less
|
|
|
|
# than the sliding window length in the model config.
|
|
|
|
if disable_sliding_window and sliding_window_len is not None:
|
|
|
|
max_len_key = "sliding_window" \
|
|
|
|
if sliding_window_len < derived_max_model_len else max_len_key
|
|
|
|
derived_max_model_len = min(derived_max_model_len, sliding_window_len)
|
|
|
|
|
|
|
|
# If none of the keys were found in the config, use a default and
|
|
|
|
# log a warning.
|
2023-09-27 16:34:00 -07:00
|
|
|
if derived_max_model_len == float("inf"):
|
2023-09-28 14:44:02 -07:00
|
|
|
if max_model_len is not None:
|
|
|
|
# If max_model_len is specified, we use it.
|
|
|
|
return max_model_len
|
|
|
|
|
|
|
|
default_max_len = 2048
|
|
|
|
logger.warning(
|
|
|
|
"The model's config.json does not contain any of the following "
|
|
|
|
"keys to determine the original maximum length of the model: "
|
2024-04-26 16:16:58 +09:00
|
|
|
"%d. Assuming the model's maximum length is %d.", possible_keys,
|
|
|
|
default_max_len)
|
2023-09-28 14:44:02 -07:00
|
|
|
derived_max_model_len = default_max_len
|
2023-09-20 13:35:11 -07:00
|
|
|
|
2023-09-27 03:36:02 -07:00
|
|
|
rope_scaling = getattr(hf_config, "rope_scaling", None)
|
2024-04-25 00:06:57 -03:00
|
|
|
if rope_scaling is not None and rope_scaling["type"] != "su":
|
2024-05-27 15:18:17 -07:00
|
|
|
if disable_sliding_window:
|
|
|
|
# TODO(robertgshaw): Find a model that supports rope_scaling
|
|
|
|
# with sliding window to see if this case should be allowed.
|
|
|
|
raise NotImplementedError(
|
|
|
|
"Disabling sliding window is not supported for models "
|
|
|
|
"with rope_scaling. Please raise an issue so we can "
|
|
|
|
"investigate.")
|
2023-09-27 03:36:02 -07:00
|
|
|
assert "factor" in rope_scaling
|
|
|
|
scaling_factor = rope_scaling["factor"]
|
2023-11-03 14:12:48 -07:00
|
|
|
if rope_scaling["type"] == "yarn":
|
|
|
|
derived_max_model_len = rope_scaling[
|
|
|
|
"original_max_position_embeddings"]
|
2023-09-27 03:36:02 -07:00
|
|
|
derived_max_model_len *= scaling_factor
|
|
|
|
|
2024-05-27 15:18:17 -07:00
|
|
|
# If the user specified a max length, make sure it is smaller than the
|
|
|
|
# derived length from the HF model config.
|
2023-09-20 13:35:11 -07:00
|
|
|
if max_model_len is None:
|
2024-04-13 06:35:50 +09:00
|
|
|
max_model_len = int(derived_max_model_len)
|
2023-09-20 13:35:11 -07:00
|
|
|
elif max_model_len > derived_max_model_len:
|
2024-03-29 12:27:51 -07:00
|
|
|
# Some models might have a separate key for specifying model_max_length
|
|
|
|
# that will be bigger than derived_max_model_len. We compare user input
|
|
|
|
# with model_max_length and allow this override when it's smaller.
|
|
|
|
model_max_length = getattr(hf_config, "model_max_length", None)
|
|
|
|
if model_max_length is not None and max_model_len <= model_max_length:
|
2024-05-27 15:18:17 -07:00
|
|
|
if disable_sliding_window:
|
|
|
|
# TODO(robertgshaw): Find a model that has model_max_length
|
|
|
|
# with sliding window to see if this case should be allowed.
|
|
|
|
raise NotImplementedError(
|
|
|
|
"Disabling sliding window is not supported for models "
|
|
|
|
"model_max_length in the config. Please raise an issue "
|
|
|
|
"so we can investigate.")
|
2024-03-29 12:27:51 -07:00
|
|
|
pass
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
f"User-specified max_model_len ({max_model_len}) is greater "
|
|
|
|
"than the derived max_model_len "
|
|
|
|
f"({max_len_key}={derived_max_model_len} or model_max_length="
|
|
|
|
f"{model_max_length} in model's config.json). This may lead "
|
|
|
|
"to incorrect model outputs or CUDA errors. Make sure the "
|
|
|
|
"value is correct and within the model context size.")
|
2023-09-27 16:34:00 -07:00
|
|
|
return int(max_model_len)
|
2024-04-02 17:40:57 -07:00
|
|
|
|
|
|
|
|
2024-05-05 06:39:34 +08:00
|
|
|
def get_served_model_name(model: str,
|
|
|
|
served_model_name: Optional[Union[str, List[str]]]):
|
|
|
|
"""
|
|
|
|
If the input is a non-empty list, the first model_name in
|
|
|
|
`served_model_name` is taken.
|
|
|
|
If the input is a non-empty string, it is used directly.
|
|
|
|
For cases where the input is either an empty string or an
|
|
|
|
empty list, the fallback is to use `self.model`.
|
|
|
|
"""
|
|
|
|
if not served_model_name:
|
|
|
|
return model
|
|
|
|
if isinstance(served_model_name, list):
|
|
|
|
return served_model_name[0]
|
|
|
|
return served_model_name
|
|
|
|
|
|
|
|
|
2024-04-16 08:54:57 +03:00
|
|
|
@dataclass
|
|
|
|
class DecodingConfig:
|
|
|
|
"""Dataclass which contains the decoding strategy of the engine"""
|
|
|
|
|
|
|
|
# Which guided decoding algo to use. 'outlines' / 'lm-format-enforcer'
|
|
|
|
guided_decoding_backend: str = 'outlines'
|
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
valid_guided_backends = ['outlines', 'lm-format-enforcer']
|
|
|
|
backend = self.guided_decoding_backend
|
|
|
|
if backend not in valid_guided_backends:
|
|
|
|
raise ValueError(f"Invalid guided_decoding_backend '{backend},"
|
|
|
|
f"must be one of {valid_guided_backends}")
|
|
|
|
|
|
|
|
|
2024-04-02 17:40:57 -07:00
|
|
|
@dataclass(frozen=True)
|
|
|
|
class EngineConfig:
|
|
|
|
"""Dataclass which contains all engine-related configuration. This
|
|
|
|
simplifies passing around the distinct configurations in the codebase.
|
|
|
|
"""
|
|
|
|
|
|
|
|
model_config: ModelConfig
|
|
|
|
cache_config: CacheConfig
|
|
|
|
parallel_config: ParallelConfig
|
|
|
|
scheduler_config: SchedulerConfig
|
|
|
|
device_config: DeviceConfig
|
2024-04-16 11:34:39 -07:00
|
|
|
load_config: LoadConfig
|
2024-04-02 17:40:57 -07:00
|
|
|
lora_config: Optional[LoRAConfig]
|
|
|
|
vision_language_config: Optional[VisionLanguageConfig]
|
|
|
|
speculative_config: Optional[SpeculativeConfig]
|
2024-04-16 08:54:57 +03:00
|
|
|
decoding_config: Optional[DecodingConfig]
|
2024-04-02 17:40:57 -07:00
|
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
"""Verify configs are valid & consistent with each other.
|
|
|
|
"""
|
|
|
|
self.model_config.verify_with_parallel_config(self.parallel_config)
|
|
|
|
self.cache_config.verify_with_parallel_config(self.parallel_config)
|
|
|
|
|
|
|
|
if self.lora_config:
|
|
|
|
self.lora_config.verify_with_model_config(self.model_config)
|
|
|
|
self.lora_config.verify_with_scheduler_config(
|
|
|
|
self.scheduler_config)
|
|
|
|
|
|
|
|
def to_dict(self):
|
|
|
|
"""Return the configs as a dictionary, for use in **kwargs.
|
|
|
|
"""
|
|
|
|
return dict(
|
|
|
|
(field.name, getattr(self, field.name)) for field in fields(self))
|