54 lines
1.3 KiB
Python
54 lines
1.3 KiB
Python
![]() |
from vllm import LLM, SamplingParams
|
||
|
|
||
|
llm = LLM(model="meta-llama/Meta-Llama-3-8B-Instruct")
|
||
|
sampling_params = SamplingParams(temperature=0.5)
|
||
|
|
||
|
|
||
|
def print_outputs(outputs):
|
||
|
for output in outputs:
|
||
|
prompt = output.prompt
|
||
|
generated_text = output.outputs[0].text
|
||
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||
|
print("-" * 80)
|
||
|
|
||
|
|
||
|
print("=" * 80)
|
||
|
|
||
|
# In this script, we demonstrate how to pass input to the chat method:
|
||
|
|
||
|
conversation = [
|
||
|
{
|
||
|
"role": "system",
|
||
|
"content": "You are a helpful assistant"
|
||
|
},
|
||
|
{
|
||
|
"role": "user",
|
||
|
"content": "Hello"
|
||
|
},
|
||
|
{
|
||
|
"role": "assistant",
|
||
|
"content": "Hello! How can I assist you today?"
|
||
|
},
|
||
|
{
|
||
|
"role": "user",
|
||
|
"content": "Write an essay about the importance of higher education.",
|
||
|
},
|
||
|
]
|
||
|
outputs = llm.chat(conversation,
|
||
|
sampling_params=sampling_params,
|
||
|
use_tqdm=False)
|
||
|
print_outputs(outputs)
|
||
|
|
||
|
# A chat template can be optionally supplied.
|
||
|
# If not, the model will use its default chat template.
|
||
|
|
||
|
# with open('template_falcon_180b.jinja', "r") as f:
|
||
|
# chat_template = f.read()
|
||
|
|
||
|
# outputs = llm.chat(
|
||
|
# conversations,
|
||
|
# sampling_params=sampling_params,
|
||
|
# use_tqdm=False,
|
||
|
# chat_template=chat_template,
|
||
|
# )
|