44 lines
1.3 KiB
Python
44 lines
1.3 KiB
Python
![]() |
# SPDX-License-Identifier: Apache-2.0
|
||
|
|
||
|
from vllm import LLM, SamplingParams
|
||
|
from vllm.config import KVTransferConfig
|
||
|
|
||
|
context = "Hi " * 1000
|
||
|
context2 = "Hey " * 500
|
||
|
prompts = [
|
||
|
context + "Hello, my name is",
|
||
|
context + "The capital of France is",
|
||
|
context2 + "Your name is",
|
||
|
context2 + "The capital of China is",
|
||
|
]
|
||
|
|
||
|
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1)
|
||
|
|
||
|
llm = LLM(model="meta-llama/Llama-3.2-1B-Instruct",
|
||
|
enforce_eager=True,
|
||
|
gpu_memory_utilization=0.8,
|
||
|
kv_transfer_config=KVTransferConfig.from_cli(
|
||
|
'{"kv_connector":"SharedStorageConnector","kv_role":"kv_both", '
|
||
|
'"kv_connector_extra_config": '
|
||
|
'{"shared_storage_path": "local_storage"}}')
|
||
|
) #, max_model_len=2048, max_num_batched_tokens=2048)
|
||
|
|
||
|
# 1ST generation (prefill instance)
|
||
|
outputs = llm.generate(
|
||
|
prompts,
|
||
|
sampling_params,
|
||
|
)
|
||
|
|
||
|
new_prompts = []
|
||
|
for output in outputs:
|
||
|
prompt = output.prompt
|
||
|
generated_text = output.outputs[0].text
|
||
|
new_prompts.append(prompt + generated_text)
|
||
|
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
||
|
|
||
|
# Write new_prompts to output.txt
|
||
|
with open("output.txt", "w") as f:
|
||
|
for prompt in new_prompts:
|
||
|
f.write(prompt + "\n")
|
||
|
print(f"Saved {len(new_prompts)} prompts to output.txt")
|