2024-08-01 15:00:51 -04:00
|
|
|
"""Test model set-up and weight loading for llmcompressor-quantized models.
|
2024-05-23 17:29:18 -04:00
|
|
|
|
|
|
|
Run `pytest tests/quantization/test_compressed_tensors.py`.
|
|
|
|
"""
|
2024-09-27 14:25:10 -04:00
|
|
|
from typing import Optional
|
2024-05-23 17:29:18 -04:00
|
|
|
|
2024-06-13 10:19:56 -04:00
|
|
|
import pytest
|
2024-05-23 17:29:18 -04:00
|
|
|
import torch
|
2024-10-15 18:40:25 -04:00
|
|
|
from compressed_tensors.quantization import QuantizationType
|
2024-05-23 17:29:18 -04:00
|
|
|
|
2024-11-14 20:35:11 -05:00
|
|
|
from tests.models.utils import check_logprobs_close
|
2024-05-23 17:29:18 -04:00
|
|
|
from vllm.model_executor.layers.quantization.compressed_tensors.compressed_tensors import ( # noqa: E501
|
2024-12-18 09:57:16 -05:00
|
|
|
CompressedTensors24, CompressedTensorsLinearMethod,
|
|
|
|
CompressedTensorsW4A16Sparse24, CompressedTensorsW8A8Fp8,
|
|
|
|
CompressedTensorsW8A8Int8, CompressedTensorsW8A16Fp8,
|
|
|
|
CompressedTensorsWNA16)
|
2024-12-18 21:43:30 -05:00
|
|
|
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
|
|
|
|
sparse_cutlass_supported)
|
2024-12-18 09:57:16 -05:00
|
|
|
from vllm.platforms import current_platform
|
2024-05-23 17:29:18 -04:00
|
|
|
|
|
|
|
|
2024-09-27 14:25:10 -04:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"model_args",
|
|
|
|
[("nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change", "tensor",
|
|
|
|
QuantizationType.INT, 2560, True),
|
|
|
|
("nm-testing/tinyllama-oneshot-w8-channel-a8-tensor", "channel",
|
|
|
|
QuantizationType.INT, 2560, True),
|
|
|
|
("nm-testing/asym-w8w8-int8-static-per-tensor-tiny-llama", "tensor",
|
|
|
|
QuantizationType.INT, 2560, False)])
|
2024-06-19 18:06:44 -04:00
|
|
|
def test_compressed_tensors_w8a8_static_setup(vllm_runner, model_args):
|
2024-09-27 14:25:10 -04:00
|
|
|
model_path, strategy, quant_type, shape_0, is_symmetric = model_args
|
2024-06-09 23:49:46 -04:00
|
|
|
with vllm_runner(model_path, enforce_eager=True) as llm:
|
2024-06-08 01:59:20 -07:00
|
|
|
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
|
|
|
|
layer = model.model.layers[0]
|
2024-05-23 17:29:18 -04:00
|
|
|
|
2024-06-08 01:59:20 -07:00
|
|
|
qkv_proj = layer.self_attn.qkv_proj
|
|
|
|
o_proj = layer.self_attn.o_proj
|
|
|
|
gate_up_proj = layer.mlp.gate_up_proj
|
|
|
|
down_proj = layer.mlp.down_proj
|
2024-05-23 17:29:18 -04:00
|
|
|
|
2024-09-27 14:25:10 -04:00
|
|
|
# assert zp for symmetric and asymmetric cases
|
|
|
|
def zp_valid(zp: Optional[torch.Tensor]):
|
|
|
|
if is_symmetric:
|
|
|
|
return zp is None
|
|
|
|
|
|
|
|
return zp is not None and zp.dtype is torch.int32
|
|
|
|
|
|
|
|
assert zp_valid(qkv_proj.input_zero_point)
|
|
|
|
assert zp_valid(o_proj.input_zero_point)
|
|
|
|
assert zp_valid(gate_up_proj.input_zero_point)
|
|
|
|
assert zp_valid(down_proj.input_zero_point)
|
|
|
|
|
2024-06-08 01:59:20 -07:00
|
|
|
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
|
|
|
|
assert isinstance(o_proj.quant_method, CompressedTensorsLinearMethod)
|
|
|
|
assert isinstance(gate_up_proj.quant_method,
|
|
|
|
CompressedTensorsLinearMethod)
|
|
|
|
assert isinstance(down_proj.quant_method,
|
|
|
|
CompressedTensorsLinearMethod)
|
2024-07-07 16:42:11 -04:00
|
|
|
assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Int8)
|
2024-05-23 17:29:18 -04:00
|
|
|
|
2024-06-19 18:06:44 -04:00
|
|
|
assert qkv_proj.scheme.strategy == strategy
|
2024-07-03 18:50:08 -04:00
|
|
|
assert qkv_proj.scheme.is_static_input_scheme
|
2024-07-07 16:42:11 -04:00
|
|
|
expected_type = torch.int8
|
2024-06-30 19:06:27 -04:00
|
|
|
|
|
|
|
assert qkv_proj.weight.dtype is expected_type
|
|
|
|
assert o_proj.weight.dtype is expected_type
|
|
|
|
assert gate_up_proj.weight.dtype is expected_type
|
2024-05-23 17:29:18 -04:00
|
|
|
|
2024-06-19 18:06:44 -04:00
|
|
|
if qkv_proj.scheme.strategy == "tensor":
|
2024-06-30 19:06:27 -04:00
|
|
|
# Make sure it is a channelwise buffer
|
|
|
|
# After running process_weights_after_loading
|
|
|
|
assert len(qkv_proj.weight_scale.shape) == 2
|
|
|
|
assert qkv_proj.weight_scale.shape[0] == shape_0
|
|
|
|
assert qkv_proj.weight_scale.shape[1] == 1
|
|
|
|
assert qkv_proj.weight_scale.dtype is torch.float32
|
2024-06-08 01:59:20 -07:00
|
|
|
assert qkv_proj.input_scale.dtype is torch.float32
|
2024-06-07 12:36:26 -04:00
|
|
|
|
2024-09-12 00:46:46 +08:00
|
|
|
output = llm.generate_greedy(["Hello my name is"], max_tokens=20)
|
2024-07-11 11:40:11 -04:00
|
|
|
assert output
|
|
|
|
|
2024-06-07 12:36:26 -04:00
|
|
|
|
2024-12-23 13:33:20 -05:00
|
|
|
@pytest.mark.parametrize("model_path", [
|
|
|
|
"neuralmagic/Llama-3.2-1B-quantized.w8a8",
|
|
|
|
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Asym",
|
|
|
|
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Sym",
|
|
|
|
"nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Asym"
|
|
|
|
])
|
2024-11-14 20:35:11 -05:00
|
|
|
@pytest.mark.parametrize("max_tokens", [32])
|
|
|
|
@pytest.mark.parametrize("num_logprobs", [10])
|
|
|
|
def test_compressed_tensors_w8a8_logprobs(hf_runner, vllm_runner,
|
|
|
|
example_prompts, model_path,
|
|
|
|
max_tokens, num_logprobs):
|
|
|
|
dtype = "bfloat16"
|
|
|
|
|
2024-12-23 13:33:20 -05:00
|
|
|
# skip language translation prompt for the static per tensor asym model
|
|
|
|
if model_path == "nm-testing/Meta-Llama-3-8B-Instruct-W8A8-Static-Per-Tensor-Asym": # noqa: E501
|
|
|
|
example_prompts = example_prompts[0:-1]
|
|
|
|
|
2024-11-14 20:35:11 -05:00
|
|
|
with hf_runner(model_path, dtype=dtype) as hf_model:
|
|
|
|
hf_outputs = hf_model.generate_greedy_logprobs_limit(
|
|
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
|
|
|
|
with vllm_runner(model_path, dtype=dtype) as vllm_model:
|
|
|
|
vllm_outputs = vllm_model.generate_greedy_logprobs(
|
|
|
|
example_prompts, max_tokens, num_logprobs)
|
|
|
|
|
|
|
|
check_logprobs_close(
|
|
|
|
outputs_0_lst=hf_outputs,
|
|
|
|
outputs_1_lst=vllm_outputs,
|
|
|
|
name_0="hf",
|
|
|
|
name_1="vllm",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
2024-06-09 23:49:46 -04:00
|
|
|
def test_compressed_tensors_no_enforce_eager(vllm_runner):
|
2024-06-18 12:45:05 -04:00
|
|
|
model_path = "nm-testing/tinyllama-oneshot-w8w8-test-static-shape-change"
|
2024-06-09 23:49:46 -04:00
|
|
|
with vllm_runner(model_path) as llm:
|
2024-07-11 11:40:11 -04:00
|
|
|
output = llm.generate_greedy("Hello my name is", max_tokens=20)
|
2024-06-09 23:49:46 -04:00
|
|
|
assert output
|
|
|
|
|
|
|
|
|
2024-06-18 12:45:05 -04:00
|
|
|
@pytest.mark.parametrize("model_args", [
|
|
|
|
("nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2", "tensor"),
|
2024-09-27 14:25:10 -04:00
|
|
|
("nm-testing/tinyllama-oneshot-w8a8-dynamic-token-v2-asym", "tensor"),
|
2024-06-18 12:45:05 -04:00
|
|
|
("nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2", "channel"),
|
2024-09-27 14:25:10 -04:00
|
|
|
("nm-testing/tinyllama-oneshot-w8a8-channel-dynamic-token-v2-asym",
|
|
|
|
"channel"),
|
2024-06-18 12:45:05 -04:00
|
|
|
])
|
2024-09-27 14:25:10 -04:00
|
|
|
def test_compressed_tensors_w8a8_dynamic_per_token(vllm_runner, model_args):
|
2024-06-18 12:45:05 -04:00
|
|
|
model_path, strategy = model_args
|
2024-06-17 12:32:48 -04:00
|
|
|
with vllm_runner(model_path, dtype=torch.float16) as llm:
|
2024-06-08 01:59:20 -07:00
|
|
|
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
|
|
|
|
layer = model.model.layers[0]
|
|
|
|
|
|
|
|
qkv_proj = layer.self_attn.qkv_proj
|
|
|
|
|
|
|
|
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
|
2024-07-07 16:42:11 -04:00
|
|
|
assert isinstance(qkv_proj.scheme, CompressedTensorsW8A8Int8)
|
2024-07-03 18:50:08 -04:00
|
|
|
assert not qkv_proj.scheme.is_static_input_scheme
|
2024-06-18 12:45:05 -04:00
|
|
|
assert qkv_proj.scheme.strategy == strategy
|
2024-06-08 01:59:20 -07:00
|
|
|
assert qkv_proj.weight.dtype is torch.int8
|
2024-06-13 10:19:56 -04:00
|
|
|
|
2024-09-12 00:46:46 +08:00
|
|
|
output = llm.generate_greedy(["Hello my name is"], max_tokens=20)
|
2024-07-11 11:40:11 -04:00
|
|
|
assert output
|
|
|
|
|
2024-06-13 10:19:56 -04:00
|
|
|
|
2024-06-25 15:23:35 -04:00
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"wNa16_args",
|
|
|
|
[("nm-testing/tinyllama-oneshot-w4a16-channel-v2", "channel", None, 8),
|
|
|
|
("nm-testing/tinyllama-oneshot-w4a16-group128-v2", "group", 128, 8),
|
|
|
|
("nm-testing/tinyllama-oneshot-w8a16-per-channel", "channel", None, 4)])
|
2024-07-11 11:40:11 -04:00
|
|
|
def test_compressed_tensors_wNa16(vllm_runner, wNa16_args):
|
2024-06-25 15:23:35 -04:00
|
|
|
model, strategy, group, pack_factor = wNa16_args
|
2024-06-13 10:19:56 -04:00
|
|
|
with vllm_runner(model) as llm:
|
|
|
|
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
|
|
|
|
layer = model.model.layers[0]
|
|
|
|
|
|
|
|
qkv_proj = layer.self_attn.qkv_proj
|
|
|
|
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
|
2024-06-25 15:23:35 -04:00
|
|
|
assert isinstance(qkv_proj.scheme, CompressedTensorsWNA16)
|
2024-06-13 10:19:56 -04:00
|
|
|
|
|
|
|
assert qkv_proj.scheme.strategy == strategy
|
2024-07-11 11:40:11 -04:00
|
|
|
assert qkv_proj.scheme.group_size == (-1 if group is None else group)
|
2024-06-13 10:19:56 -04:00
|
|
|
|
|
|
|
assert qkv_proj.weight_packed.dtype is torch.int32
|
|
|
|
assert qkv_proj.weight_scale.dtype is torch.float16
|
2024-08-07 12:17:58 -04:00
|
|
|
assert qkv_proj.scheme.pack_factor == pack_factor
|
2024-06-17 12:32:48 -04:00
|
|
|
|
2024-07-11 11:40:11 -04:00
|
|
|
output = llm.generate_greedy("Hello my name is", max_tokens=20)
|
|
|
|
assert output
|
|
|
|
|
2024-06-17 12:32:48 -04:00
|
|
|
|
|
|
|
def test_compressed_tensors_w4a16_marlin24(vllm_runner):
|
|
|
|
model_path = "nm-testing/llama7b-one-shot-2_4-w4a16-marlin24-t"
|
|
|
|
with vllm_runner(model_path) as llm:
|
|
|
|
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
|
|
|
|
layer = model.model.layers[0]
|
|
|
|
|
|
|
|
qkv_proj = layer.self_attn.qkv_proj
|
|
|
|
|
|
|
|
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
|
|
|
|
assert isinstance(qkv_proj.scheme, CompressedTensorsW4A16Sparse24)
|
|
|
|
assert qkv_proj.weight_packed.dtype is torch.int32
|
|
|
|
|
2024-07-11 11:40:11 -04:00
|
|
|
output = llm.generate_greedy("Hello my name is", max_tokens=20)
|
2024-06-17 12:32:48 -04:00
|
|
|
assert output
|
2024-07-07 16:42:11 -04:00
|
|
|
|
|
|
|
|
|
|
|
def test_compressed_tensors_fp8(vllm_runner):
|
|
|
|
model_path = "nm-testing/Meta-Llama-3-8B-FP8-compressed-tensors-test"
|
|
|
|
with vllm_runner(model_path) as llm:
|
|
|
|
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
|
|
|
|
layer = model.model.layers[0]
|
|
|
|
|
|
|
|
qkv_proj = layer.self_attn.qkv_proj
|
|
|
|
|
|
|
|
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
|
2024-08-07 12:17:58 -04:00
|
|
|
assert isinstance(
|
|
|
|
qkv_proj.scheme,
|
|
|
|
(CompressedTensorsW8A8Fp8, CompressedTensorsW8A16Fp8))
|
|
|
|
|
2024-07-07 16:42:11 -04:00
|
|
|
assert qkv_proj.input_scale.dtype is torch.float32
|
2024-08-07 12:17:58 -04:00
|
|
|
|
|
|
|
if isinstance(qkv_proj.scheme, CompressedTensorsW8A8Fp8):
|
|
|
|
assert len(qkv_proj.input_scale.shape) == 0
|
|
|
|
assert qkv_proj.weight.dtype is torch.float8_e4m3fn
|
|
|
|
assert qkv_proj.weight_scale.dtype is torch.float32
|
|
|
|
assert len(qkv_proj.weight_scale.shape) == 0
|
2024-07-07 16:42:11 -04:00
|
|
|
|
2024-07-11 11:40:11 -04:00
|
|
|
output = llm.generate_greedy("Hello my name is", max_tokens=20)
|
2024-07-07 16:42:11 -04:00
|
|
|
assert output
|
2024-07-23 00:11:50 -04:00
|
|
|
|
|
|
|
|
|
|
|
def test_compressed_tensors_kv_cache(vllm_runner):
|
|
|
|
model_path = "nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme"
|
|
|
|
with vllm_runner(model_path, kv_cache_dtype="fp8") as llm:
|
|
|
|
output = llm.generate_greedy("Hello world!", max_tokens=20)
|
2024-09-27 14:25:10 -04:00
|
|
|
assert output
|
2024-12-18 09:57:16 -05:00
|
|
|
|
|
|
|
|
2024-12-18 21:43:30 -05:00
|
|
|
@pytest.mark.skipif(not sparse_cutlass_supported(),
|
2024-12-18 09:57:16 -05:00
|
|
|
reason="Sparse FP8 is not yet supported on this GPU type.")
|
|
|
|
def _test_2of4_quant_models(qkv_proj, weight_strategy, input_strategy):
|
|
|
|
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
|
|
|
|
assert isinstance(qkv_proj.scheme, CompressedTensors24)
|
|
|
|
|
|
|
|
assert qkv_proj.scheme.weight_quant.strategy == weight_strategy
|
|
|
|
assert qkv_proj.scheme.input_quant.strategy == input_strategy
|
|
|
|
assert qkv_proj.scheme.quantized
|
|
|
|
assert qkv_proj.quant_method.quantization_config.sparsity_scheme_map
|
|
|
|
sparsity_map = qkv_proj.quant_method.quantization_config.sparsity_scheme_map # noqa: E501
|
|
|
|
assert sparsity_map.get("Linear").format == "dense"
|
|
|
|
assert sparsity_map.get("Linear").sparsity_structure == "2:4"
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.skipif(not current_platform.has_device_capability(90),
|
|
|
|
reason="Sparse FP8 is not yet supported on this GPU type.")
|
|
|
|
@pytest.mark.parametrize("args_2of4", [
|
|
|
|
("nm-testing/Meta-Llama-3-8B-Instruct-FP8-Dynamic-2of4-testing", "channel",
|
|
|
|
"token"),
|
|
|
|
("nm-testing/Meta-Llama-3-8B-Instruct-FP8-Static-Per-Tensor-testing",
|
|
|
|
"channel", "tensor"),
|
|
|
|
("nm-testing/Meta-Llama-3-8B-Instruct-FP8-Static-testing", "tensor",
|
|
|
|
"tensor"),
|
|
|
|
("nm-testing/Meta-Llama-3-8B-Instruct-FP8-Dynamic-IA-Per-Tensor-Weight-testing",
|
|
|
|
"tensor", "token"),
|
|
|
|
])
|
|
|
|
def test_compressed_tensors_2of4_quant_fp8(vllm_runner, args_2of4):
|
|
|
|
model, weight_strategy, input_strategy = args_2of4
|
|
|
|
with vllm_runner(model) as llm:
|
|
|
|
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
|
|
|
|
layer = model.model.layers[0]
|
|
|
|
|
|
|
|
qkv_proj = layer.self_attn.qkv_proj
|
|
|
|
assert qkv_proj.scheme.weights_dtype == torch.float8_e4m3fn
|
|
|
|
_test_2of4_quant_models(qkv_proj, weight_strategy, input_strategy)
|
|
|
|
|
|
|
|
output = llm.generate_greedy("Hello my name is", max_tokens=20)
|
|
|
|
print(output)
|
|
|
|
assert output
|
|
|
|
|
|
|
|
|
2024-12-18 21:43:30 -05:00
|
|
|
@pytest.mark.skipif(not sparse_cutlass_supported(),
|
2024-12-18 09:57:16 -05:00
|
|
|
reason="Sparse FP8 is not yet supported on this GPU type.")
|
|
|
|
@pytest.mark.parametrize("args_2of4", [
|
|
|
|
("nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Dynamic-IA-Per-Channel-Weight-testing",
|
|
|
|
"channel", "token"),
|
|
|
|
("nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Static-testing", "tensor",
|
|
|
|
"tensor"),
|
|
|
|
("nm-testing/TinyLlama-1.1B-Chat-v1.0-INT8-Dynamic-IA-Per-Tensor-Weight-testing",
|
|
|
|
"tensor", "token"),
|
|
|
|
])
|
|
|
|
def test_compressed_tensors_2of4_quant_int8(vllm_runner, args_2of4):
|
|
|
|
model, weight_strategy, input_strategy = args_2of4
|
|
|
|
with vllm_runner(model) as llm:
|
|
|
|
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
|
|
|
|
layer = model.model.layers[0]
|
|
|
|
|
|
|
|
qkv_proj = layer.self_attn.qkv_proj
|
|
|
|
assert qkv_proj.scheme.weights_dtype == torch.int8
|
|
|
|
_test_2of4_quant_models(qkv_proj, weight_strategy, input_strategy)
|
|
|
|
|
|
|
|
output = llm.generate_greedy("Hello my name is", max_tokens=20)
|
|
|
|
print(output)
|
|
|
|
assert output
|
|
|
|
|
|
|
|
|
2024-12-18 21:43:30 -05:00
|
|
|
@pytest.mark.skipif(not sparse_cutlass_supported(),
|
2024-12-18 09:57:16 -05:00
|
|
|
reason="Sparse FP8 is not yet supported on this GPU type.")
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"args_2of4",
|
|
|
|
[("nm-testing/TinyLlama-1.1B-Chat-v1.0-2of4-Sparse-Dense-Compressor")])
|
|
|
|
def test_compressed_tensors_2of4_sparse(vllm_runner, args_2of4):
|
|
|
|
model = args_2of4
|
|
|
|
with vllm_runner(model) as llm:
|
|
|
|
model = llm.model.llm_engine.model_executor.driver_worker.model_runner.model # noqa: E501
|
|
|
|
layer = model.model.layers[0]
|
|
|
|
|
|
|
|
qkv_proj = layer.self_attn.qkv_proj
|
|
|
|
assert isinstance(qkv_proj.quant_method, CompressedTensorsLinearMethod)
|
|
|
|
assert isinstance(qkv_proj.scheme, CompressedTensors24)
|
|
|
|
|
|
|
|
assert qkv_proj.scheme.weight_quant is None
|
|
|
|
assert qkv_proj.scheme.input_quant is None
|
|
|
|
assert not qkv_proj.scheme.quantized
|
|
|
|
assert qkv_proj.quant_method.quantization_config.sparsity_scheme_map
|
|
|
|
sparsity_map = qkv_proj.quant_method.quantization_config.sparsity_scheme_map # noqa: E501
|
|
|
|
assert sparsity_map.get("Linear").format == "dense"
|
|
|
|
assert sparsity_map.get("Linear").sparsity_structure == "2:4"
|
|
|
|
|
|
|
|
output = llm.generate_greedy("Hello my name is", max_tokens=20)
|
|
|
|
print(output)
|
|
|
|
assert output
|