2024-07-17 21:38:35 -04:00
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
|
|
|
|
import vllm._custom_ops as ops
|
2024-08-16 12:06:30 -05:00
|
|
|
from tests.kernels.quant_utils import (FP8_DTYPE,
|
|
|
|
ref_dynamic_per_tensor_fp8_quant,
|
2024-07-17 21:38:35 -04:00
|
|
|
ref_dynamic_per_token_quant)
|
2024-09-25 10:35:52 -04:00
|
|
|
from tests.kernels.utils import opcheck
|
2024-09-18 18:38:11 +08:00
|
|
|
from vllm.utils import seed_everything
|
2024-07-17 21:38:35 -04:00
|
|
|
|
|
|
|
DTYPES = [torch.half, torch.bfloat16, torch.float]
|
|
|
|
HIDDEN_SIZES = [1, 2, 3, 4, 16, 67, 768, 2048, 5120, 5137, 8192,
|
|
|
|
8193] # Arbitrary values for testing
|
|
|
|
HIDDEN_SIZES += list(range(1024, 1033)) # vectorized conversion edge cases
|
|
|
|
NUM_TOKENS = [1, 7, 83, 4096] # Arbitrary values for testing
|
2024-07-19 21:15:26 -04:00
|
|
|
SCALE_UBS = [True, False]
|
2024-07-17 21:38:35 -04:00
|
|
|
SEEDS = [0]
|
|
|
|
|
|
|
|
|
2024-09-25 10:35:52 -04:00
|
|
|
def opcheck_fp8_quant(output,
|
|
|
|
input,
|
|
|
|
scale=None,
|
|
|
|
scale_ub=None,
|
|
|
|
use_per_token_if_dynamic=False):
|
|
|
|
if scale is not None:
|
|
|
|
opcheck(torch.ops._C.static_scaled_fp8_quant, (output, input, scale))
|
|
|
|
elif use_per_token_if_dynamic:
|
|
|
|
scale = torch.empty((input.shape[0], 1),
|
|
|
|
device=input.device,
|
|
|
|
dtype=torch.float32)
|
|
|
|
opcheck(torch.ops._C.dynamic_per_token_scaled_fp8_quant,
|
|
|
|
(output, input, scale, scale_ub))
|
|
|
|
else:
|
|
|
|
scale = torch.empty((input.numel() // input.shape[-1], 1),
|
|
|
|
device=input.device,
|
|
|
|
dtype=torch.float32)
|
|
|
|
opcheck(torch.ops._C.dynamic_scaled_fp8_quant, (output, input, scale))
|
|
|
|
|
|
|
|
|
2024-07-17 21:38:35 -04:00
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
2024-07-19 21:15:26 -04:00
|
|
|
@pytest.mark.parametrize("scale_ub", SCALE_UBS)
|
2024-07-17 21:38:35 -04:00
|
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
|
|
@torch.inference_mode()
|
|
|
|
def test_dynamic_per_token_fp8_quant(num_tokens: int, hidden_size: int,
|
2024-07-19 21:15:26 -04:00
|
|
|
dtype: torch.dtype, scale_ub: bool,
|
|
|
|
seed: int) -> None:
|
2024-09-18 18:38:11 +08:00
|
|
|
seed_everything(seed)
|
2024-07-17 21:38:35 -04:00
|
|
|
|
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype,
|
|
|
|
device="cuda") + 1e-6 # avoid nans
|
|
|
|
|
2024-07-19 21:15:26 -04:00
|
|
|
scale_ub = torch.mean(x).to(dtype=torch.float32, device='cuda') \
|
|
|
|
if scale_ub else None
|
2024-08-16 12:06:30 -05:00
|
|
|
ref_out, ref_scales = ref_dynamic_per_token_quant(x, FP8_DTYPE, scale_ub)
|
2024-07-19 19:08:15 -04:00
|
|
|
ops_out, ops_scales = ops.scaled_fp8_quant(x,
|
2024-07-19 21:15:26 -04:00
|
|
|
scale_ub=scale_ub,
|
2024-07-19 19:08:15 -04:00
|
|
|
use_per_token_if_dynamic=True)
|
2024-07-17 21:38:35 -04:00
|
|
|
|
2024-08-15 21:24:04 -07:00
|
|
|
torch.testing.assert_close(ref_scales, ops_scales)
|
|
|
|
torch.testing.assert_close(ref_out.to(dtype=torch.float32),
|
|
|
|
ops_out.to(dtype=torch.float32))
|
2024-07-17 21:38:35 -04:00
|
|
|
|
2024-09-25 10:35:52 -04:00
|
|
|
opcheck_fp8_quant(ops_out,
|
|
|
|
x,
|
|
|
|
None,
|
|
|
|
scale_ub,
|
|
|
|
use_per_token_if_dynamic=True)
|
|
|
|
|
2024-07-17 21:38:35 -04:00
|
|
|
|
|
|
|
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
|
|
|
|
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
|
|
|
|
@pytest.mark.parametrize("dtype", DTYPES)
|
|
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
|
|
@torch.inference_mode()
|
|
|
|
def test_dynamic_per_tensor_fp8_quant(num_tokens: int, hidden_size: int,
|
|
|
|
dtype: torch.dtype, seed: int) -> None:
|
2024-09-18 18:38:11 +08:00
|
|
|
seed_everything(seed)
|
2024-07-17 21:38:35 -04:00
|
|
|
|
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
|
|
|
|
|
|
|
|
ref_out, ref_scale = ref_dynamic_per_tensor_fp8_quant(x)
|
|
|
|
ops_out, ops_scale = ops.scaled_fp8_quant(x)
|
|
|
|
|
2024-08-15 21:24:04 -07:00
|
|
|
torch.testing.assert_close(ref_scale, ops_scale)
|
|
|
|
torch.testing.assert_close(ref_out.to(dtype=torch.float32),
|
|
|
|
ops_out.to(dtype=torch.float32))
|
2024-07-22 16:08:30 -04:00
|
|
|
|
2024-09-25 10:35:52 -04:00
|
|
|
opcheck_fp8_quant(ops_out, x)
|
|
|
|
|
2024-07-22 16:08:30 -04:00
|
|
|
|
|
|
|
# Regression test for a case with large activations where an int32 index cannot
|
|
|
|
# represent the number of elements.
|
|
|
|
@torch.inference_mode()
|
|
|
|
@pytest.mark.parametrize("seed", SEEDS)
|
|
|
|
def test_fp8_quant_large(seed: int) -> None:
|
2024-09-18 18:38:11 +08:00
|
|
|
seed_everything(seed)
|
2024-07-22 16:08:30 -04:00
|
|
|
|
|
|
|
num_tokens = 1024000 # Mistral-Nemo's max_position_embeddings
|
|
|
|
hidden_size = 1152 # Smallest hidden_size to reproduce the error
|
|
|
|
dtype = torch.bfloat16
|
|
|
|
|
|
|
|
x = torch.rand(num_tokens, hidden_size, dtype=dtype, device="cuda")
|
|
|
|
ref_out, scale = ref_dynamic_per_tensor_fp8_quant(x)
|
|
|
|
ops_out, _ = ops.scaled_fp8_quant(x, scale)
|
|
|
|
|
|
|
|
# Minimize memory footprint in this test by freeing x and upconverting
|
|
|
|
# the outputs in place. (torch.allclose does not support fp8)
|
|
|
|
del x
|
|
|
|
ref_out = ref_out.to(dtype=dtype)
|
|
|
|
ops_out = ops_out.to(dtype=dtype)
|
|
|
|
|
2024-08-15 21:24:04 -07:00
|
|
|
torch.testing.assert_close(ref_out, ops_out)
|