vllm/tests/entrypoints/llm/test_generate_multiple_loras.py

68 lines
1.8 KiB
Python
Raw Normal View History

import weakref
import pytest
# downloading lora to test lora requests
from huggingface_hub import snapshot_download
from vllm import LLM
from vllm.lora.request import LoRARequest
from ...conftest import cleanup
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
PROMPTS = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
LORA_NAME = "typeof/zephyr-7b-beta-lora"
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to
# enable garbage collection
llm = LLM(model=MODEL_NAME,
tensor_parallel_size=1,
max_model_len=8192,
enable_lora=True,
max_loras=4,
max_lora_rank=64,
max_num_seqs=128,
enforce_eager=True)
with llm.deprecate_legacy_api():
yield weakref.proxy(llm)
del llm
cleanup()
@pytest.fixture(scope="module")
def zephyr_lora_files():
return snapshot_download(repo_id=LORA_NAME)
@pytest.mark.skip_global_cleanup
def test_multiple_lora_requests(llm: LLM, zephyr_lora_files):
lora_request = [
LoRARequest(LORA_NAME, idx + 1, zephyr_lora_files)
for idx in range(len(PROMPTS))
]
# Multiple SamplingParams should be matched with each prompt
outputs = llm.generate(PROMPTS, lora_request=lora_request)
assert len(PROMPTS) == len(outputs)
# Exception raised, if the size of params does not match the size of prompts
with pytest.raises(ValueError):
outputs = llm.generate(PROMPTS, lora_request=lora_request[:1])
# Single LoRARequest should be applied to every prompt
single_lora_request = lora_request[0]
outputs = llm.generate(PROMPTS, lora_request=single_lora_request)
assert len(PROMPTS) == len(outputs)