vllm/tests/models/test_transformers.py

120 lines
3.5 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
"""Test the functionality of the Transformers backend.
Run `pytest tests/models/test_transformers.py`.
"""
from contextlib import nullcontext
import pytest
from ..conftest import HfRunner, VllmRunner
from ..utils import multi_gpu_test
from .utils import check_logprobs_close
def check_implementation(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
example_prompts: list[str],
model: str,
**kwargs,
):
max_tokens = 32
num_logprobs = 5
with vllm_runner(model, **kwargs) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
with hf_runner(model) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize(
"model,model_impl",
[
("meta-llama/Llama-3.2-1B-Instruct", "transformers"),
("openai-community/gpt2", "transformers"),
("ArthurZ/Ilama-3.2-1B", "auto"), # CUSTOM CODE
]) # trust_remote_code=True by default
def test_models(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
example_prompts: list[str],
model: str,
model_impl: str,
) -> None:
maybe_raises = nullcontext()
if model == "openai-community/gpt2" and model_impl == "transformers":
# Model is not backend compatible
maybe_raises = pytest.raises(
ValueError,
match="The Transformers implementation.*not compatible with vLLM")
with maybe_raises:
check_implementation(hf_runner,
vllm_runner,
example_prompts,
model,
model_impl=model_impl)
@multi_gpu_test(num_gpus=2)
def test_distributed(
hf_runner: type[HfRunner],
vllm_runner: type[VllmRunner],
example_prompts,
):
kwargs = {"model_impl": "transformers", "tensor_parallel_size": 2}
check_implementation(hf_runner, vllm_runner, example_prompts,
"meta-llama/Llama-3.2-1B-Instruct", **kwargs)
@pytest.mark.parametrize("model, quantization_kwargs", [
(
"meta-llama/Llama-3.2-1B-Instruct",
{
"quantization": "bitsandbytes",
"load_format": "bitsandbytes",
},
),
])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("num_logprobs", [5])
def test_quantization(
vllm_runner: type[VllmRunner],
example_prompts: list[str],
model: str,
quantization_kwargs: dict[str, str],
max_tokens: int,
num_logprobs: int,
) -> None:
with vllm_runner(
model, model_impl="auto", enforce_eager=True,
**quantization_kwargs) as vllm_model: # type: ignore[arg-type]
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens=max_tokens, num_logprobs=num_logprobs)
with vllm_runner(
model,
model_impl="transformers",
enforce_eager=True,
**quantization_kwargs) as vllm_model: # type: ignore[arg-type]
transformers_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens=max_tokens, num_logprobs=num_logprobs)
check_logprobs_close(
outputs_0_lst=transformers_outputs,
outputs_1_lst=vllm_outputs,
name_0="transformers",
name_1="vllm",
)