vllm/docs/source/serving/serving_with_llamastack.rst

43 lines
1.2 KiB
ReStructuredText
Raw Normal View History

.. _run_on_llamastack:
Serving with Llama Stack
============================
vLLM is also available via `Llama Stack <https://github.com/meta-llama/llama-stack>`_ .
To install Llama Stack, run
.. code-block:: console
$ pip install llama-stack -q
Inference using OpenAI Compatible API
-------------------------------------
Then start Llama Stack server pointing to your vLLM server with the following configuration:
.. code-block:: yaml
inference:
- provider_id: vllm0
provider_type: remote::vllm
config:
url: http://127.0.0.1:8000
Please refer to `this guide <https://github.com/meta-llama/llama-stack/blob/main/docs/source/getting_started/distributions/self_hosted_distro/remote_vllm.md>`_ for more details on this remote vLLM provider.
Inference via Embedded vLLM
---------------------------
An `inline vLLM provider
<https://github.com/meta-llama/llama-stack/tree/main/llama_stack/providers/inline/inference/vllm>`_
is also available. This is a sample of configuration using that method:
.. code-block:: yaml
inference
- provider_type: vllm
config:
model: Llama3.1-8B-Instruct
tensor_parallel_size: 4