2024-06-29 23:45:54 +08:00
|
|
|
from typing import List, Optional, Tuple, Type
|
2024-03-25 14:16:30 -07:00
|
|
|
|
|
|
|
import pytest
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
from vllm.config import VisionLanguageConfig
|
|
|
|
|
2024-06-29 23:45:54 +08:00
|
|
|
from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
|
2024-06-30 11:44:25 +08:00
|
|
|
from .utils import check_outputs_equal
|
2024-06-06 18:17:18 +08:00
|
|
|
|
2024-06-18 06:10:04 -07:00
|
|
|
pytestmark = pytest.mark.vlm
|
2024-06-06 18:17:18 +08:00
|
|
|
|
|
|
|
# The image token is placed before "user" on purpose so that the test can pass
|
2024-06-26 16:02:34 +08:00
|
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
|
|
"stop_sign":
|
2024-06-06 18:17:18 +08:00
|
|
|
"<image>\nUSER: What's the content of the image?\nASSISTANT:",
|
2024-06-26 16:02:34 +08:00
|
|
|
"cherry_blossom":
|
2024-06-06 18:17:18 +08:00
|
|
|
"<image>\nUSER: What is the season?\nASSISTANT:",
|
2024-06-26 16:02:34 +08:00
|
|
|
})
|
2024-06-06 18:17:18 +08:00
|
|
|
|
2024-06-03 13:56:41 +08:00
|
|
|
|
|
|
|
def iter_llava_configs(model_name: str):
|
|
|
|
image_hw_to_feature_size = {
|
|
|
|
(336, 336): 576,
|
|
|
|
}
|
|
|
|
|
|
|
|
for (h, w), f in image_hw_to_feature_size.items():
|
|
|
|
for input_type, input_shape in [
|
|
|
|
(VisionLanguageConfig.ImageInputType.PIXEL_VALUES, (1, 3, h, w)),
|
|
|
|
(VisionLanguageConfig.ImageInputType.IMAGE_FEATURES, (1, f, 1024)),
|
|
|
|
]:
|
|
|
|
yield (model_name,
|
|
|
|
VisionLanguageConfig(image_input_type=input_type,
|
|
|
|
image_feature_size=f,
|
|
|
|
image_token_id=32000,
|
|
|
|
image_input_shape=input_shape,
|
|
|
|
image_processor=model_name,
|
|
|
|
image_processor_revision=None))
|
|
|
|
|
|
|
|
|
2024-03-25 14:16:30 -07:00
|
|
|
model_and_vl_config = [
|
2024-06-03 13:56:41 +08:00
|
|
|
*iter_llava_configs("llava-hf/llava-1.5-7b-hf"),
|
2024-03-25 14:16:30 -07:00
|
|
|
]
|
|
|
|
|
|
|
|
|
2024-06-06 18:17:18 +08:00
|
|
|
def vllm_to_hf_output(vllm_output: Tuple[List[int], str],
|
|
|
|
vlm_config: VisionLanguageConfig, model_id: str):
|
2024-03-25 14:16:30 -07:00
|
|
|
"""Sanitize vllm output to be comparable with hf output.
|
|
|
|
The function reduces `input_ids` from 1, 32000, 32000, ..., 32000,
|
|
|
|
x1, x2, x3 ... to 1, 32000, x1, x2, x3 ...
|
|
|
|
It also reduces `output_str` from "<image><image>bla" to "bla".
|
|
|
|
"""
|
2024-06-26 16:02:34 +08:00
|
|
|
output_ids, output_str = vllm_output
|
2024-06-06 18:17:18 +08:00
|
|
|
image_token_id = vlm_config.image_token_id
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
|
|
|
image_token_str = tokenizer.decode(image_token_id)
|
2024-03-25 14:16:30 -07:00
|
|
|
|
2024-06-26 16:02:34 +08:00
|
|
|
hf_output_ids = [
|
|
|
|
token_id for idx, token_id in enumerate(output_ids)
|
|
|
|
if token_id != image_token_id or output_ids[idx - 1] != image_token_id
|
2024-06-06 18:17:18 +08:00
|
|
|
]
|
|
|
|
hf_output_str = output_str \
|
|
|
|
.replace(image_token_str * vlm_config.image_feature_size, "")
|
2024-03-25 14:16:30 -07:00
|
|
|
|
2024-06-26 16:02:34 +08:00
|
|
|
return hf_output_ids, hf_output_str
|
2024-06-06 18:17:18 +08:00
|
|
|
|
|
|
|
|
2024-06-29 23:45:54 +08:00
|
|
|
def run_test(
|
|
|
|
hf_runner: Type[HfRunner],
|
|
|
|
vllm_runner: Type[VllmRunner],
|
|
|
|
image_assets: _ImageAssets,
|
|
|
|
model_and_config: Tuple[str, VisionLanguageConfig],
|
|
|
|
*,
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
tensor_parallel_size: int,
|
|
|
|
distributed_executor_backend: Optional[str] = None,
|
|
|
|
):
|
2024-03-25 14:16:30 -07:00
|
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
|
|
|
|
All the image fixtures for the test is under tests/images.
|
2024-06-03 13:56:41 +08:00
|
|
|
For huggingface runner, we provide the PIL images as input.
|
|
|
|
For vllm runner, we provide MultiModalData objects and corresponding
|
2024-03-25 14:16:30 -07:00
|
|
|
vision language config as input.
|
|
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
|
|
The text output is sanitized to be able to compare with hf.
|
|
|
|
"""
|
2024-06-06 18:17:18 +08:00
|
|
|
model_id, vlm_config = model_and_config
|
2024-06-26 16:02:34 +08:00
|
|
|
hf_images = [asset.for_hf() for asset in image_assets]
|
2024-06-03 13:56:41 +08:00
|
|
|
|
2024-06-30 01:06:13 -07:00
|
|
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
|
|
|
# vLLM needs a fresh new process without cuda initialization.
|
|
|
|
# if we run HF first, the cuda initialization will be done and it
|
|
|
|
# will hurt multiprocessing backend with fork method (the default method).
|
2024-06-06 18:17:18 +08:00
|
|
|
|
2024-06-08 01:59:20 -07:00
|
|
|
with vllm_runner(model_id,
|
|
|
|
dtype=dtype,
|
2024-06-29 23:45:54 +08:00
|
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
|
|
distributed_executor_backend=distributed_executor_backend,
|
2024-06-08 01:59:20 -07:00
|
|
|
enforce_eager=True,
|
|
|
|
**vlm_config.as_cli_args_dict()) as vllm_model:
|
2024-06-30 01:06:13 -07:00
|
|
|
|
|
|
|
# NOTE: `asset.for_vllm` will call `torch.cuda.device_count()`
|
|
|
|
# we must put it inside the vllm_runner context manager
|
|
|
|
# i.e. after creating vLLM instance.
|
|
|
|
vllm_images = [asset.for_vllm(vlm_config) for asset in image_assets]
|
|
|
|
|
|
|
|
vllm_image_prompts = [
|
|
|
|
p.replace("<image>", "<image>" * vlm_config.image_feature_size)
|
|
|
|
for p in HF_IMAGE_PROMPTS
|
|
|
|
]
|
|
|
|
|
2024-06-08 01:59:20 -07:00
|
|
|
vllm_outputs = vllm_model.generate_greedy(vllm_image_prompts,
|
|
|
|
max_tokens,
|
|
|
|
images=vllm_images)
|
2024-03-25 14:16:30 -07:00
|
|
|
|
2024-06-30 01:06:13 -07:00
|
|
|
with hf_runner(model_id, dtype=dtype, is_vision_model=True) as hf_model:
|
|
|
|
hf_outputs = hf_model.generate_greedy(HF_IMAGE_PROMPTS,
|
|
|
|
max_tokens,
|
|
|
|
images=hf_images)
|
|
|
|
|
2024-06-30 11:44:25 +08:00
|
|
|
check_outputs_equal(
|
|
|
|
hf_outputs,
|
|
|
|
[
|
|
|
|
vllm_to_hf_output(vllm_output, vlm_config, model_id)
|
|
|
|
for vllm_output in vllm_outputs
|
|
|
|
],
|
|
|
|
name_0="hf",
|
|
|
|
name_1="vllm",
|
|
|
|
)
|
2024-06-29 23:45:54 +08:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model_and_config", model_and_vl_config)
|
|
|
|
@pytest.mark.parametrize("dtype", ["half"])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
|
|
def test_models(hf_runner, vllm_runner, image_assets, model_and_config,
|
|
|
|
dtype: str, max_tokens: int) -> None:
|
|
|
|
run_test(
|
|
|
|
hf_runner,
|
|
|
|
vllm_runner,
|
|
|
|
image_assets,
|
|
|
|
model_and_config,
|
|
|
|
dtype=dtype,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
tensor_parallel_size=1,
|
|
|
|
)
|