146 lines
5.5 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
import os
from typing import TYPE_CHECKING, Optional
import psutil
import torch
from vllm.logger import init_logger
from .interface import Platform, PlatformEnum, _Backend
logger = init_logger(__name__)
if TYPE_CHECKING:
from vllm.config import VllmConfig
else:
VllmConfig = None
logger = init_logger(__name__)
class CpuPlatform(Platform):
_enum = PlatformEnum.CPU
device_name: str = "cpu"
device_type: str = "cpu"
dispatch_key: str = "CPU"
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
return "cpu"
@classmethod
def get_attn_backend_cls(cls, selected_backend: _Backend, head_size: int,
dtype: torch.dtype, kv_cache_dtype: Optional[str],
block_size: int, use_v1: bool,
use_mla: bool) -> str:
if selected_backend and selected_backend != _Backend.TORCH_SDPA:
logger.info("Cannot use %s backend on CPU.", selected_backend)
logger.info("Using Torch SDPA backend.")
return "vllm.attention.backends.torch_sdpa.TorchSDPABackend"
@classmethod
def get_device_total_memory(cls, device_id: int = 0) -> int:
return psutil.virtual_memory().total
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
return False
@classmethod
def inference_mode(cls):
return torch.no_grad()
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
import vllm.envs as envs
from vllm.utils import GiB_bytes
model_config = vllm_config.model_config
# Reminder: Please update docs/source/features/compatibility_matrix.md
# If the feature combo become valid
if not model_config.enforce_eager:
logger.warning(
"CUDA graph is not supported on CPU, fallback to the eager "
"mode.")
model_config.enforce_eager = True
cache_config = vllm_config.cache_config
if cache_config and cache_config.block_size is None:
cache_config.block_size = 16
kv_cache_space = envs.VLLM_CPU_KVCACHE_SPACE
if kv_cache_space >= 0:
if kv_cache_space == 0:
cache_config.cpu_kvcache_space_bytes = 4 * GiB_bytes # type: ignore
logger.warning(
"Environment variable VLLM_CPU_KVCACHE_SPACE (GB) "
"for CPU backend is not set, using 4 by default.")
else:
cache_config.cpu_kvcache_space_bytes = kv_cache_space * GiB_bytes # type: ignore # noqa
else:
raise RuntimeError(
"Invalid environment variable VLLM_CPU_KVCACHE_SPACE"
f" {kv_cache_space}, expect a positive integer value.")
scheduler_config = vllm_config.scheduler_config
if ((scheduler_config.chunked_prefill_enabled
or cache_config.enable_prefix_caching)
and model_config.dtype == torch.half):
logger.warning("Chunked-prefill on the CPU backend only does not"
" support fp16 for now, cast to bf16.")
model_config.dtype = torch.bfloat16
parallel_config = vllm_config.parallel_config
if (parallel_config.distributed_executor_backend is not None
and parallel_config.distributed_executor_backend != "mp"):
logger.warning(("%s is not supported on CPU, fallback to mp "
"distributed executor backend."),
parallel_config.distributed_executor_backend)
parallel_config.distributed_executor_backend = "mp"
if parallel_config.worker_cls == "auto":
if vllm_config.speculative_config:
parallel_config.worker_cls = \
"vllm.spec_decode.spec_decode_worker.create_spec_worker"
parallel_config.sd_worker_cls = \
"vllm.worker.cpu_worker.CPUWorker"
else:
parallel_config.worker_cls = "vllm.worker.cpu_worker.CPUWorker"
assert vllm_config.device_config.device_type == "cpu"
#
# Environment variables for CPU executor
#
# Disable torch async compiling which won't work with daemonic processes
os.environ["TORCHINDUCTOR_COMPILE_THREADS"] = "1"
# Intel OpenMP setting
ld_prealod_str = os.getenv("LD_PRELOAD", "")
if "libiomp5.so" in ld_prealod_str:
# The time(milliseconds) that a thread should wait after
# completing the execution of a parallel region, before sleeping.
os.environ['KMP_BLOCKTIME'] = "1"
# Prevents the CPU to run into low performance state
os.environ['KMP_TPAUSE'] = "0"
# Provides fine granularity parallelism
os.environ['KMP_FORKJOIN_BARRIER_PATTERN'] = "dist,dist"
os.environ['KMP_PLAIN_BARRIER_PATTERN'] = "dist,dist"
os.environ['KMP_REDUCTION_BARRIER_PATTERN'] = "dist,dist"
# To hint IPEX uses shared memory based AllReduce
os.environ["LOCAL_WORLD_SIZE"] = str(
vllm_config.parallel_config.tensor_parallel_size)
@classmethod
def is_pin_memory_available(cls) -> bool:
logger.warning("Pin memory is not supported on CPU.")
return False
@classmethod
def get_punica_wrapper(cls) -> str:
return "vllm.lora.punica_wrapper.punica_cpu.PunicaWrapperCPU"