vllm/tests/v1/shutdown/test_forward_error.py

130 lines
4.7 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
"""Test that we handle an Error in model forward and shutdown."""
import asyncio
import pytest
from tests.utils import wait_for_gpu_memory_to_clear
from tests.v1.shutdown.utils import (SHUTDOWN_TEST_THRESHOLD_BYTES,
SHUTDOWN_TEST_TIMEOUT_SEC)
from vllm import LLM, AsyncEngineArgs, SamplingParams
from vllm.distributed import get_tensor_model_parallel_rank
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.utils import cuda_device_count_stateless
from vllm.v1.engine.async_llm import AsyncLLM
from vllm.v1.engine.exceptions import EngineDeadError
MODELS = ["meta-llama/Llama-3.2-1B"]
def evil_forward(self, *args, **kwargs):
"""Evil forward method that raise an exception after 10 calls."""
NUMBER_OF_GOOD_PASSES = 10
if not hasattr(self, "num_calls"):
self.num_calls = 0
if (self.num_calls == NUMBER_OF_GOOD_PASSES
and get_tensor_model_parallel_rank() == 0):
raise Exception("Simulated illegal memory access on Rank 0!")
self.num_calls += 1
return self.model(*args, **kwargs)
@pytest.mark.asyncio
@pytest.mark.parametrize("tensor_parallel_size", [2, 1])
@pytest.mark.parametrize("model", MODELS)
async def test_async_llm_model_error(monkeypatch, tensor_parallel_size: int,
model: str) -> None:
"""Test that AsyncLLM propagates a forward pass error and frees memory.
AsyncLLM always uses an MP client.
"""
if cuda_device_count_stateless() < tensor_parallel_size:
pytest.skip(reason="Not enough CUDA devices")
# Monkeypatch an error in the model.
monkeypatch.setattr(LlamaForCausalLM, "forward", evil_forward)
engine_args = AsyncEngineArgs(model=model,
enforce_eager=True,
tensor_parallel_size=tensor_parallel_size)
async_llm = AsyncLLM.from_engine_args(engine_args)
async def generate(request_id: str):
generator = async_llm.generate("Hello my name is",
request_id=request_id,
sampling_params=SamplingParams())
try:
async for _ in generator:
pass
except Exception as e:
return e
NUM_REQS = 3
tasks = [generate(f"request-{idx}") for idx in range(NUM_REQS)]
outputs = await asyncio.gather(*tasks)
# Every request should get an EngineDeadError.
for output in outputs:
assert isinstance(output, EngineDeadError)
# AsyncLLM should be errored.
assert async_llm.errored
# We should not be able to make another request.
with pytest.raises(EngineDeadError):
async for _ in async_llm.generate("Hello my name is",
request_id="abc",
sampling_params=SamplingParams()):
raise Exception("We should not get here.")
# Confirm all the processes are cleaned up.
wait_for_gpu_memory_to_clear(
devices=list(range(tensor_parallel_size)),
threshold_bytes=2 * 2**30,
timeout_s=60,
)
# NOTE: shutdown is handled by the API Server if an exception
# occurs, so it is expected that we would need to call this.
async_llm.shutdown()
@pytest.mark.timeout(SHUTDOWN_TEST_TIMEOUT_SEC)
@pytest.mark.parametrize("enable_multiprocessing", [True])
@pytest.mark.parametrize("tensor_parallel_size", [2, 1])
@pytest.mark.parametrize("model", MODELS)
def test_llm_model_error(monkeypatch, tensor_parallel_size: int,
enable_multiprocessing: bool, model: str) -> None:
"""Test that LLM propagates a forward pass error and frees memory.
TODO(andy) - LLM without multiprocessing; LLM with multiprocessing
and >1 rank
"""
if cuda_device_count_stateless() < tensor_parallel_size:
pytest.skip(reason="Not enough CUDA devices")
with monkeypatch.context() as m:
MP_VALUE = "1" if enable_multiprocessing else "0"
m.setenv("VLLM_ENABLE_V1_MULTIPROCESSING", MP_VALUE)
# Monkeypatch an error in the model.
m.setattr(LlamaForCausalLM, "forward", evil_forward)
llm = LLM(model=model,
enforce_eager=True,
tensor_parallel_size=tensor_parallel_size)
with pytest.raises(
EngineDeadError if enable_multiprocessing else Exception):
llm.generate("Hello my name is Robert and I")
# Confirm all the processes are cleaned up.
wait_for_gpu_memory_to_clear(
devices=list(range(tensor_parallel_size)),
threshold_bytes=SHUTDOWN_TEST_THRESHOLD_BYTES,
)