Using Kubernetes to deploy vLLM is a scalable and efficient way to serve machine learning models. This guide will walk you through the process of deploying vLLM with Kubernetes, including the necessary prerequisites, steps for deployment, and testing.
## Prerequisites
Before you begin, ensure that you have the following:
- A running Kubernetes cluster
- NVIDIA Kubernetes Device Plugin (`k8s-device-plugin`): This can be found at `https://github.com/NVIDIA/k8s-device-plugin/`
- Available GPU resources in your cluster
## Deployment Steps
1.**Create a PVC , Secret and Deployment for vLLM**
PVC is used to store the model cache and it is optional, you can use hostPath or other storage options
```yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mistral-7b
namespace: default
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 50Gi
storageClassName: default
volumeMode: Filesystem
```
Secret is optional and only required for accessing gated models, you can skip this step if you are not using gated models
If the service is correctly deployed, you should receive a response from the vLLM model.
## Conclusion
Deploying vLLM with Kubernetes allows for efficient scaling and management of ML models leveraging GPU resources. By following the steps outlined above, you should be able to set up and test a vLLM deployment within your Kubernetes cluster. If you encounter any issues or have suggestions, please feel free to contribute to the documentation.