207 lines
7.2 KiB
Python
207 lines
7.2 KiB
Python
![]() |
"""Tests for InternVL's multimodal preprocessing kwargs."""
|
||
|
from typing import Callable, Optional
|
||
|
|
||
|
import pytest
|
||
|
from transformers import AutoTokenizer
|
||
|
|
||
|
from vllm.inputs import InputContext, token_inputs
|
||
|
from vllm.multimodal import MultiModalRegistry
|
||
|
|
||
|
from .....conftest import _ImageAssets
|
||
|
from ....utils import build_model_context
|
||
|
|
||
|
models = ["OpenGVLab/InternVL2-2B"]
|
||
|
|
||
|
|
||
|
# Wrap lazy imports to avoid initializing CUDA during test collection
|
||
|
@pytest.fixture()
|
||
|
def input_processor_for_internvl():
|
||
|
from vllm.model_executor.models.internvl import InternVLInputPipeline
|
||
|
|
||
|
pipeline = InternVLInputPipeline('<img>', '</img>', '<IMG_CONTEXT>')
|
||
|
return pipeline.input_processor
|
||
|
|
||
|
|
||
|
@pytest.fixture()
|
||
|
def dummy_data_for_internvl():
|
||
|
from vllm.model_executor.models.internvl import InternVLInputPipeline
|
||
|
|
||
|
pipeline = InternVLInputPipeline('<img>', '</img>', '<IMG_CONTEXT>')
|
||
|
return pipeline.dummy_data
|
||
|
|
||
|
|
||
|
@pytest.fixture()
|
||
|
def get_max_internvl_image_tokens():
|
||
|
from vllm.model_executor.models.internvl import (
|
||
|
get_max_internvl_image_tokens)
|
||
|
return get_max_internvl_image_tokens
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("model", models)
|
||
|
@pytest.mark.parametrize("max_dynamic_patch", [1, 4])
|
||
|
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
|
||
|
def test_input_mapper_override(
|
||
|
model: str,
|
||
|
image_assets: _ImageAssets,
|
||
|
max_dynamic_patch: int,
|
||
|
dynamic_image_size: Optional[bool],
|
||
|
):
|
||
|
mm_processor_kwargs = {
|
||
|
"max_dynamic_patch": max_dynamic_patch,
|
||
|
}
|
||
|
if dynamic_image_size is not None:
|
||
|
mm_processor_kwargs["dynamic_image_size"] = dynamic_image_size
|
||
|
|
||
|
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
|
||
|
if dynamic_image_size is False:
|
||
|
expected_num_patches = 1
|
||
|
|
||
|
ctx = build_model_context(
|
||
|
model_name=model,
|
||
|
tokenizer_name=model,
|
||
|
trust_remote_code=True,
|
||
|
mm_processor_kwargs=mm_processor_kwargs,
|
||
|
)
|
||
|
|
||
|
mm_registry = MultiModalRegistry()
|
||
|
mm_registry.init_mm_limits_per_prompt(ctx.model_config)
|
||
|
|
||
|
image = image_assets[0].pil_image.resize((448 * 2, 448 * 2))
|
||
|
vllm_result = mm_registry.map_input(
|
||
|
ctx.model_config,
|
||
|
{"image": image},
|
||
|
)
|
||
|
assert vllm_result["pixel_values"].size(1) == expected_num_patches
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("model", models)
|
||
|
@pytest.mark.parametrize("max_dynamic_patch", [1, 4, None])
|
||
|
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
|
||
|
def test_max_tokens_override(
|
||
|
get_max_internvl_image_tokens: Callable,
|
||
|
model: str,
|
||
|
max_dynamic_patch: Optional[int],
|
||
|
dynamic_image_size: Optional[bool],
|
||
|
):
|
||
|
"""Ensure get_max_internvl_image_tokens handles mm_processor_kwargs."""
|
||
|
ctx = build_model_context(
|
||
|
model_name=model,
|
||
|
tokenizer_name=model,
|
||
|
trust_remote_code=True,
|
||
|
mm_processor_kwargs=None,
|
||
|
)
|
||
|
|
||
|
if max_dynamic_patch is None:
|
||
|
max_dynamic_patch = ctx.get_hf_config().max_dynamic_patch
|
||
|
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
|
||
|
if dynamic_image_size is False:
|
||
|
expected_num_patches = 1
|
||
|
expected_max_tokens = 256 * expected_num_patches
|
||
|
|
||
|
actual_max_tokens = get_max_internvl_image_tokens(
|
||
|
ctx=InputContext(ctx.model_config),
|
||
|
max_dynamic_patch=max_dynamic_patch,
|
||
|
dynamic_image_size=dynamic_image_size,
|
||
|
)
|
||
|
assert expected_max_tokens == actual_max_tokens
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("model", models)
|
||
|
@pytest.mark.parametrize("num_imgs", [1, 2])
|
||
|
@pytest.mark.parametrize("max_dynamic_patch", [1, 4, None])
|
||
|
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
|
||
|
def test_dummy_data_override(
|
||
|
dummy_data_for_internvl: Callable,
|
||
|
model: str,
|
||
|
num_imgs: int,
|
||
|
max_dynamic_patch: Optional[int],
|
||
|
dynamic_image_size: Optional[bool],
|
||
|
):
|
||
|
"""Ensure dummy_data_for_internvl handles kwargs properly."""
|
||
|
# Same as the previous test - don't initialize mm_processor_kwargs
|
||
|
# in this test and assume that the kwargs will be correctly expanded by
|
||
|
# the partial when calling the dummy data func.
|
||
|
ctx = build_model_context(
|
||
|
model_name=model,
|
||
|
tokenizer_name=model,
|
||
|
trust_remote_code=True,
|
||
|
mm_processor_kwargs=None,
|
||
|
)
|
||
|
|
||
|
if max_dynamic_patch is None:
|
||
|
max_dynamic_patch = ctx.get_hf_config().max_dynamic_patch
|
||
|
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
|
||
|
if dynamic_image_size is False:
|
||
|
expected_num_patches = 1
|
||
|
expected_max_tokens = 256 * expected_num_patches
|
||
|
|
||
|
dummy_data = dummy_data_for_internvl(
|
||
|
ctx=ctx,
|
||
|
seq_len=8192, # Should be bigger than num_imgs * toks_per_img
|
||
|
mm_counts={"image": num_imgs},
|
||
|
max_dynamic_patch=max_dynamic_patch,
|
||
|
dynamic_image_size=dynamic_image_size,
|
||
|
)
|
||
|
sequence_data = dummy_data.seq_data
|
||
|
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
|
||
|
image_token_id = tokenizer.encode('<IMG_CONTEXT>',
|
||
|
add_special_tokens=False)[0]
|
||
|
|
||
|
# Ensure we have the right number of placeholders per size
|
||
|
img_tok_count = sequence_data.get_token_ids().count(image_token_id)
|
||
|
assert img_tok_count == expected_max_tokens * num_imgs
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("model", models)
|
||
|
@pytest.mark.parametrize("max_dynamic_patch", [1, 4])
|
||
|
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
|
||
|
@pytest.mark.parametrize("num_imgs", [1, 2])
|
||
|
def test_input_processor_override(
|
||
|
input_processor_for_internvl: Callable,
|
||
|
image_assets: _ImageAssets,
|
||
|
model: str,
|
||
|
num_imgs: int,
|
||
|
max_dynamic_patch: int,
|
||
|
dynamic_image_size: Optional[bool],
|
||
|
):
|
||
|
"""Ensure input_processor_for_internvl handles kwargs properly."""
|
||
|
# Same as the previous test - don't initialize mm_processor_kwargs
|
||
|
# in this test and assume that the kwargs will be correctly expanded by
|
||
|
# the partial when calling the custom input processor.
|
||
|
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
|
||
|
if dynamic_image_size is False:
|
||
|
expected_num_patches = 1
|
||
|
|
||
|
ctx = build_model_context(
|
||
|
model_name=model,
|
||
|
tokenizer_name=model,
|
||
|
trust_remote_code=True,
|
||
|
mm_processor_kwargs=None,
|
||
|
)
|
||
|
expected_toks_per_img = 256 * expected_num_patches
|
||
|
|
||
|
# Build the image str / prompt based on the number of images we pass
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model, trust_remote_code=True)
|
||
|
placeholders = "<image>" if num_imgs == 1 else "\n".join(
|
||
|
f"Image-{i}: <image>\n" for i in range(1, num_imgs + 1))
|
||
|
prompt = placeholders
|
||
|
images = [image_assets[0].pil_image.resize((448 * 2, 448 * 2))] * num_imgs
|
||
|
|
||
|
inputs = token_inputs(prompt_token_ids=tokenizer.encode(prompt),
|
||
|
prompt=prompt,
|
||
|
multi_modal_data={"image": images})
|
||
|
|
||
|
processed_inputs = input_processor_for_internvl(
|
||
|
ctx,
|
||
|
inputs,
|
||
|
max_dynamic_patch=max_dynamic_patch,
|
||
|
dynamic_image_size=dynamic_image_size,
|
||
|
)
|
||
|
|
||
|
# Ensure we have the right number of placeholders per num_crops size
|
||
|
image_token_id = tokenizer.encode('<IMG_CONTEXT>',
|
||
|
add_special_tokens=False)[0]
|
||
|
img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id)
|
||
|
assert img_tok_count == expected_toks_per_img * num_imgs
|