2024-06-11 10:15:40 -07:00
.. _spec_decode:
Speculative decoding in vLLM
============================
.. warning ::
Please note that speculative decoding in vLLM is not yet optimized and does
not usually yield inter-token latency reductions for all prompt datasets or sampling parameters. The work
to optimize it is ongoing and can be followed in `this issue. <https://github.com/vllm-project/vllm/issues/4630> `_
This document shows how to use `Speculative Decoding <https://x.com/karpathy/status/1697318534555336961> `_ with vLLM.
Speculative decoding is a technique which improves inter-token latency in memory-bound LLM inference.
Speculating with a draft model
------------------------------
The following code configures vLLM to use speculative decoding with a draft model, speculating 5 tokens at a time.
.. code-block :: python
2024-06-11 10:31:56 -07:00
2024-06-11 10:15:40 -07:00
from vllm import LLM, SamplingParams
prompts = [
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(
model="facebook/opt-6.7b",
tensor_parallel_size=1,
speculative_model="facebook/opt-125m",
num_speculative_tokens=5,
use_v2_block_manager=True,
)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Speculating by matching n-grams in the prompt
---------------------------------------------
The following code configures vLLM to use speculative decoding where proposals are generated by
matching n-grams in the prompt. For more information read `this thread. <https://x.com/joao_gante/status/1747322413006643259> `_
.. code-block :: python
2024-06-11 10:31:56 -07:00
2024-06-11 10:15:40 -07:00
from vllm import LLM, SamplingParams
prompts = [
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(
model="facebook/opt-6.7b",
tensor_parallel_size=1,
speculative_model="[ngram]",
num_speculative_tokens=5,
ngram_prompt_lookup_max=4,
use_v2_block_manager=True,
)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Resources for vLLM contributors
-------------------------------
* `A Hacker's Guide to Speculative Decoding in vLLM <https://www.youtube.com/watch?v=9wNAgpX6z_4> `_
* `What is Lookahead Scheduling in vLLM? <https://docs.google.com/document/d/1Z9TvqzzBPnh5WHcRwjvK2UEeFeq5zMZb5mFE8jR0HCs/edit#heading=h.1fjfb0donq5a> `_
2024-07-14 02:58:09 -05:00
* `Information on batch expansion <https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit#heading=h.kk7dq05lc6q8> `_
2024-06-11 10:15:40 -07:00
* `Dynamic speculative decoding <https://github.com/vllm-project/vllm/issues/4565> `_