vllm/tests/test_sampling_params.py

90 lines
2.5 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
"""Tests for the SamplingParams class.
"""
import pytest
from vllm import SamplingParams
from vllm.config import ModelConfig
from vllm.entrypoints.openai.protocol import ChatCompletionRequest
MODEL_NAME = "Qwen/Qwen1.5-7B"
def test_max_tokens_none():
"""max_tokens=None should be allowed"""
SamplingParams(temperature=0.01, top_p=0.1, max_tokens=None)
@pytest.fixture(scope="module")
def model_config():
return ModelConfig(
MODEL_NAME,
task="auto",
tokenizer=MODEL_NAME,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype="float16",
revision=None,
)
@pytest.fixture(scope="module")
def default_max_tokens():
return 4096
def test_sampling_params_from_request_with_no_guided_decoding_backend(
model_config, default_max_tokens):
# guided_decoding_backend is not present at request level
request = ChatCompletionRequest.model_validate({
'messages': [{
'role': 'user',
'content': 'Hello'
}],
'model':
MODEL_NAME,
'response_format': {
'type': 'json_object',
},
})
sampling_params = request.to_sampling_params(
default_max_tokens,
model_config.logits_processor_pattern,
)
# we do not expect any backend to be present and the default
# guided_decoding_backend at engine level will be used.
assert sampling_params.guided_decoding.backend is None
@pytest.mark.parametrize("request_level_guided_decoding_backend,expected",
[("xgrammar", "xgrammar"),
("lm-format-enforcer", "lm-format-enforcer"),
("outlines", "outlines")])
def test_sampling_params_from_request_with_guided_decoding_backend(
request_level_guided_decoding_backend: str, expected: str,
model_config, default_max_tokens):
request = ChatCompletionRequest.model_validate({
'messages': [{
'role': 'user',
'content': 'Hello'
}],
'model':
MODEL_NAME,
'response_format': {
'type': 'json_object',
},
'guided_decoding_backend':
request_level_guided_decoding_backend,
})
sampling_params = request.to_sampling_params(
default_max_tokens,
model_config.logits_processor_pattern,
)
# backend correctly identified in resulting sampling_params
assert sampling_params.guided_decoding.backend == expected