vllm/tests/tensorizer_loader/test_tensorizer.py

352 lines
12 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
import gc
import json
import os
import pathlib
import subprocess
from functools import partial
from unittest.mock import MagicMock, patch
import openai
import pytest
import torch
from huggingface_hub import snapshot_download
from vllm import SamplingParams
from vllm.engine.arg_utils import EngineArgs
# yapf conflicts with isort for this docstring
# yapf: disable
from vllm.model_executor.model_loader.tensorizer import (TensorizerConfig,
TensorSerializer,
is_vllm_tensorized,
load_with_tensorizer,
open_stream,
serialize_vllm_model,
tensorize_vllm_model)
# yapf: enable
from vllm.utils import PlaceholderModule, import_from_path
from ..utils import VLLM_PATH, RemoteOpenAIServer
from .conftest import retry_until_skip
try:
from tensorizer import EncryptionParams
except ImportError:
tensorizer = PlaceholderModule("tensorizer") # type: ignore[assignment]
EncryptionParams = tensorizer.placeholder_attr("EncryptionParams")
EXAMPLES_PATH = VLLM_PATH / "examples"
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, seed=0)
model_ref = "facebook/opt-125m"
tensorize_model_for_testing_script = os.path.join(
os.path.dirname(__file__), "tensorize_vllm_model_for_testing.py")
def is_curl_installed():
try:
subprocess.check_call(['curl', '--version'])
return True
except (subprocess.CalledProcessError, FileNotFoundError):
return False
def write_keyfile(keyfile_path: str):
encryption_params = EncryptionParams.random()
pathlib.Path(keyfile_path).parent.mkdir(parents=True, exist_ok=True)
with open(keyfile_path, 'wb') as f:
f.write(encryption_params.key)
@patch('vllm.model_executor.model_loader.tensorizer.TensorizerAgent')
def test_load_with_tensorizer(mock_agent, tensorizer_config):
mock_linear_method = MagicMock()
mock_agent_instance = mock_agent.return_value
mock_agent_instance.deserialize.return_value = MagicMock()
result = load_with_tensorizer(tensorizer_config,
quant_method=mock_linear_method)
mock_agent.assert_called_once_with(tensorizer_config,
quant_method=mock_linear_method)
mock_agent_instance.deserialize.assert_called_once()
assert result == mock_agent_instance.deserialize.return_value
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
def test_can_deserialize_s3(vllm_runner):
model_ref = "EleutherAI/pythia-1.4b"
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
with vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=tensorized_path,
num_readers=1,
s3_endpoint="object.ord1.coreweave.com",
)) as loaded_hf_model:
deserialized_outputs = loaded_hf_model.generate(
prompts, sampling_params)
# noqa: E501
assert deserialized_outputs
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
def test_deserialized_encrypted_vllm_model_has_same_outputs(
vllm_runner, tmp_path):
with vllm_runner(model_ref) as vllm_model:
model_path = tmp_path / (model_ref + ".tensors")
key_path = tmp_path / (model_ref + ".key")
write_keyfile(key_path)
outputs = vllm_model.generate(prompts, sampling_params)
config_for_serializing = TensorizerConfig(tensorizer_uri=model_path,
encryption_keyfile=key_path)
vllm_model.apply_model(
partial(serialize_vllm_model,
tensorizer_config=config_for_serializing))
config_for_deserializing = TensorizerConfig(tensorizer_uri=model_path,
encryption_keyfile=key_path)
with vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=config_for_deserializing
) as loaded_vllm_model: # noqa: E501
deserialized_outputs = loaded_vllm_model.generate(
prompts, sampling_params)
# noqa: E501
assert outputs == deserialized_outputs
def test_deserialized_hf_model_has_same_outputs(hf_runner, vllm_runner,
tmp_path):
with hf_runner(model_ref) as hf_model:
model_path = tmp_path / (model_ref + ".tensors")
max_tokens = 50
outputs = hf_model.generate_greedy(prompts, max_tokens=max_tokens)
with open_stream(model_path, "wb+") as stream:
serializer = TensorSerializer(stream)
serializer.write_module(hf_model.model)
with vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=model_path,
num_readers=1,
)) as loaded_hf_model:
deserialized_outputs = loaded_hf_model.generate_greedy(
prompts, max_tokens=max_tokens)
assert outputs == deserialized_outputs
def test_vllm_model_can_load_with_lora(vllm_runner, tmp_path):
multilora_inference = import_from_path(
"examples.offline_inference.multilora_inference",
EXAMPLES_PATH / "offline_inference/multilora_inference.py",
)
model_ref = "meta-llama/Llama-2-7b-hf"
lora_path = snapshot_download(repo_id="yard1/llama-2-7b-sql-lora-test")
test_prompts = multilora_inference.create_test_prompts(lora_path)
# Serialize model before deserializing and binding LoRA adapters
with vllm_runner(model_ref) as vllm_model:
model_path = tmp_path / (model_ref + ".tensors")
vllm_model.apply_model(
partial(
serialize_vllm_model,
tensorizer_config=TensorizerConfig(tensorizer_uri=model_path)))
with vllm_runner(
model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=model_path,
num_readers=1,
),
enable_lora=True,
max_loras=1,
max_lora_rank=8,
max_cpu_loras=2,
max_num_seqs=50,
max_model_len=1000,
) as loaded_vllm_model:
multilora_inference.process_requests(
loaded_vllm_model.model.llm_engine, test_prompts)
assert loaded_vllm_model
def test_load_without_tensorizer_load_format(vllm_runner):
model = None
with pytest.raises(ValueError):
model = vllm_runner(
model_ref,
model_loader_extra_config=TensorizerConfig(tensorizer_uri="test"))
del model
gc.collect()
torch.cuda.empty_cache()
@pytest.mark.skipif(not is_curl_installed(), reason="cURL is not installed")
def test_openai_apiserver_with_tensorizer(vllm_runner, tmp_path):
## Serialize model
with vllm_runner(model_ref) as vllm_model:
model_path = tmp_path / (model_ref + ".tensors")
vllm_model.apply_model(
partial(
serialize_vllm_model,
tensorizer_config=TensorizerConfig(tensorizer_uri=model_path)))
model_loader_extra_config = {
"tensorizer_uri": str(model_path),
}
## Start OpenAI API server
openai_args = [
"--dtype",
"float16",
"--load-format",
"tensorizer",
"--model-loader-extra-config",
json.dumps(model_loader_extra_config),
]
with RemoteOpenAIServer(model_ref, openai_args) as server:
print("Server ready.")
client = server.get_client()
completion = client.completions.create(model=model_ref,
prompt="Hello, my name is",
max_tokens=5,
temperature=0.0)
assert completion.id is not None
assert len(completion.choices) == 1
assert len(completion.choices[0].text) >= 5
assert completion.choices[0].finish_reason == "length"
assert completion.usage == openai.types.CompletionUsage(
completion_tokens=5, prompt_tokens=6, total_tokens=11)
def test_raise_value_error_on_invalid_load_format(vllm_runner):
model = None
with pytest.raises(ValueError):
model = vllm_runner(
model_ref,
load_format="safetensors",
model_loader_extra_config=TensorizerConfig(tensorizer_uri="test"))
del model
gc.collect()
torch.cuda.empty_cache()
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires 2 GPUs")
def test_tensorizer_with_tp_path_without_template(vllm_runner):
with pytest.raises(ValueError):
model_ref = "EleutherAI/pythia-1.4b"
tensorized_path = f"s3://tensorized/{model_ref}/fp16/model.tensors"
vllm_runner(
model_ref,
load_format="tensorizer",
model_loader_extra_config=TensorizerConfig(
tensorizer_uri=tensorized_path,
num_readers=1,
s3_endpoint="object.ord1.coreweave.com",
),
tensor_parallel_size=2,
disable_custom_all_reduce=True,
)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Requires 2 GPUs")
def test_deserialized_encrypted_vllm_model_with_tp_has_same_outputs(
vllm_runner, tmp_path):
model_ref = "EleutherAI/pythia-1.4b"
# record outputs from un-sharded un-tensorized model
with vllm_runner(
model_ref,
disable_custom_all_reduce=True,
enforce_eager=True,
) as base_model:
outputs = base_model.generate(prompts, sampling_params)
base_model.model.llm_engine.model_executor.shutdown()
# load model with two shards and serialize with encryption
model_path = str(tmp_path / (model_ref + "-%02d.tensors"))
key_path = tmp_path / (model_ref + ".key")
tensorizer_config = TensorizerConfig(
tensorizer_uri=model_path,
encryption_keyfile=key_path,
)
tensorize_vllm_model(
engine_args=EngineArgs(
model=model_ref,
tensor_parallel_size=2,
disable_custom_all_reduce=True,
enforce_eager=True,
),
tensorizer_config=tensorizer_config,
)
assert os.path.isfile(model_path % 0), "Serialization subprocess failed"
assert os.path.isfile(model_path % 1), "Serialization subprocess failed"
with vllm_runner(
model_ref,
tensor_parallel_size=2,
load_format="tensorizer",
disable_custom_all_reduce=True,
enforce_eager=True,
model_loader_extra_config=tensorizer_config) as loaded_vllm_model:
deserialized_outputs = loaded_vllm_model.generate(
prompts, sampling_params)
assert outputs == deserialized_outputs
@retry_until_skip(3)
def test_vllm_tensorized_model_has_same_outputs(vllm_runner, tmp_path):
gc.collect()
torch.cuda.empty_cache()
model_ref = "facebook/opt-125m"
model_path = tmp_path / (model_ref + ".tensors")
config = TensorizerConfig(tensorizer_uri=str(model_path))
with vllm_runner(model_ref) as vllm_model:
outputs = vllm_model.generate(prompts, sampling_params)
vllm_model.apply_model(
partial(serialize_vllm_model, tensorizer_config=config))
assert is_vllm_tensorized(config)
with vllm_runner(model_ref,
load_format="tensorizer",
model_loader_extra_config=config) as loaded_vllm_model:
deserialized_outputs = loaded_vllm_model.generate(
prompts, sampling_params)
# noqa: E501
assert outputs == deserialized_outputs