vllm/tests/kernels/test_mamba_ssm.py

723 lines
28 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
import pytest
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from tests.kernels.utils import opcheck
from vllm import _custom_ops as ops # noqa: F401
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.model_executor.layers.mamba.ops.mamba_ssm import (
selective_scan_fn, selective_state_update)
from vllm.platforms import current_platform
def selective_state_update_ref(state,
x,
dt,
A,
B,
C,
D=None,
z=None,
dt_bias=None,
dt_softplus=False):
"""
Argument:
state: (batch, dim, dstate) or (batch, nheads, dim, dstate)
x: (batch, dim) or (batch, nheads, dim)
dt: (batch, dim) or (batch, nheads, dim)
A: (dim, dstate) or (nheads, dim, dstate)
B: (batch, dstate) or (batch, ngroups, dstate)
C: (batch, dstate) or (batch, ngroups, dstate)
D: (dim,) or (nheads, dim)
z: (batch, dim) or (batch, nheads, dim)
dt_bias: (dim,) or (nheads, dim)
Return:
out: (batch, dim) or (batch, nheads, dim)
"""
has_heads = state.dim() > 3
if state.dim() == 3:
state = state.unsqueeze(1)
if x.dim() == 2:
x = x.unsqueeze(1)
if dt.dim() == 2:
dt = dt.unsqueeze(1)
if A.dim() == 2:
A = A.unsqueeze(0)
if B.dim() == 2:
B = B.unsqueeze(1)
if C.dim() == 2:
C = C.unsqueeze(1)
if D is not None and D.dim() == 1:
D = D.unsqueeze(0)
if z is not None and z.dim() == 2:
z = z.unsqueeze(1)
if dt_bias is not None and dt_bias.dim() == 1:
dt_bias = dt_bias.unsqueeze(0)
batch, nheads, dim, dstate = state.shape
assert x.shape == (batch, nheads, dim)
assert dt.shape == x.shape
assert A.shape == (nheads, dim, dstate)
ngroups = B.shape[1]
assert nheads % ngroups == 0, "nheads must be divisible by ngroups"
assert B.shape == (batch, ngroups, dstate)
assert C.shape == B.shape
if D is not None:
assert D.shape == (nheads, dim)
if z is not None:
assert z.shape == x.shape
if dt_bias is not None:
assert dt_bias.shape == (nheads, dim)
dt = dt + dt_bias
dt = F.softplus(dt) if dt_softplus else dt
dA = torch.exp(rearrange(dt, "b h d -> b h d 1") *
A) # (batch, nheads, dim, dstate)
B = repeat(B, "b g n -> b (g h) n",
h=nheads // ngroups) # (batch, nheads, dstate)
C = repeat(C, "b g n -> b (g h) n",
h=nheads // ngroups) # (batch, nheads, dstate)
dB = rearrange(dt, "b h d -> b h d 1") * rearrange(
B, "b h n -> b h 1 n") # (batch, nheads, dim, dstate)
state.copy_(state * dA +
dB * rearrange(x, "b h d -> b h d 1")) # (batch, dim, dstate
out = torch.einsum("bhdn,bhn->bhd", state.to(C.dtype), C)
if D is not None:
out += (x * D).to(out.dtype)
out = (out if z is None else out * F.silu(z)).to(x.dtype)
if not has_heads:
out = out.squeeze(1)
return out
def selective_scan_ref(u,
delta,
A,
B,
C,
D=None,
z=None,
delta_bias=None,
delta_softplus=False,
return_last_state=False,
prev_state=None,
final_state_out=None):
"""
u: r(B D L)
delta: r(B D L)
A: c(D N) or r(D N)
B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
D: r(D)
z: r(B D L)
delta_bias: r(D), fp32
prev_state: r(B D N), fp32
out: r(B D L)
last_state (optional): r(B D dstate) or c(B D dstate)
"""
dtype_in = u.dtype
u = u.float()
delta = delta.float()
if delta_bias is not None:
delta = delta + delta_bias[..., None].float()
if delta_softplus:
delta = F.softplus(delta)
batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
is_variable_B = B.dim() >= 3
is_variable_C = C.dim() >= 3
B = B.float()
C = C.float()
x = A.new_zeros((batch, dim, dstate)) if prev_state is None else prev_state
ys = []
deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
if not is_variable_B:
deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
else:
if B.dim() == 3:
deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
else:
B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
if is_variable_C and C.dim() == 4:
C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
for i in range(u.shape[2]):
x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
if not is_variable_C:
y = torch.einsum('bdn,dn->bd', x, C)
else:
if C.dim() == 3:
y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
else:
y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
if i == u.shape[2] - 1:
if final_state_out is None:
final_state_out = x
else:
final_state_out.copy_(x)
ys.append(y)
y = torch.stack(ys, dim=2) # (batch dim L)
out = y if D is None else y + u * rearrange(D, "d -> d 1")
if z is not None:
out = out * F.silu(z)
out = out.to(dtype=dtype_in)
return out if not return_last_state else (out, final_state_out)
def selective_scan_opcheck_fn(u,
delta,
A,
B,
C,
D=None,
z=None,
delta_bias=None,
delta_softplus=False,
cu_seq_len=None,
cache_indices=None,
has_initial_state=None,
ssm_states=None,
pad_slot_id=PAD_SLOT_ID):
"""if return_last_state is True, returns (out, last_state)
last_state has shape (batch, dim, dstate).
"""
if u.stride(-1) != 1:
u = u.contiguous()
if delta.stride(-1) != 1:
delta = delta.contiguous()
if D is not None:
D = D.contiguous()
if B.stride(-1) != 1:
B = B.contiguous()
if C.stride(-1) != 1:
C = C.contiguous()
if z is not None and z.stride(-1) != 1:
z = z.contiguous()
if B.dim() == 3 and cu_seq_len is None:
B = B.unsqueeze(1)
if B.dim() == 2 and cu_seq_len is not None:
B = B.unsqueeze(0)
if C.dim() == 3 and cu_seq_len is None:
C = C.unsqueeze(1)
if C.dim() == 2 and cu_seq_len is not None:
C = C.unsqueeze(0)
# Disable test_autograd_registration for now as it seems to trigger
# a bogus error.
opcheck(torch.ops._C.selective_scan_fwd,
(u, delta, A, B, C, D, z, delta_bias, delta_softplus, cu_seq_len,
cache_indices, has_initial_state, ssm_states, pad_slot_id),
test_utils=["test_schema", "test_faketensor"])
@pytest.mark.parametrize('wtype', [torch.float32])
@pytest.mark.parametrize('itype',
[torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize('seqlen', [128, 256, 512, 1024, 2048, 4096])
@pytest.mark.parametrize('has_delta_bias', [True])
@pytest.mark.parametrize('delta_softplus', [True])
@pytest.mark.parametrize('has_z', [True])
@pytest.mark.parametrize('has_D', [True])
@pytest.mark.parametrize("varBC_groups", [1, 2])
@pytest.mark.parametrize("is_variable_C", [True])
@pytest.mark.parametrize("is_variable_B", [True])
@pytest.mark.parametrize("scan_chunks", [1, 2, 3])
def test_selective_scan(is_variable_B, is_variable_C, varBC_groups, has_D,
has_z, has_delta_bias, delta_softplus, seqlen, itype,
wtype, scan_chunks):
if varBC_groups > 1 and (not is_variable_B or not is_variable_C):
pytest.skip() # This config is not applicable
device = 'cuda'
rtol, atol = (6e-4, 2e-3) if itype == torch.float32 else (3e-3, 5e-3)
if itype == torch.bfloat16:
rtol, atol = 3e-2, 5e-2
rtolw, atolw = (1e-3, 1e-3)
if has_z: # If we have z, the errors on the weights seem higher
rtolw = max(rtolw, rtol)
atolw = max(atolw, atol)
# set seed
current_platform.seed_everything(0)
batch_size = 1
dim = 4
dstate = 8
A = (-0.5 * torch.rand(dim, dstate, device=device, dtype=wtype))
A_ref = A.clone()
if not is_variable_B:
B_shape = [dim, dstate]
elif varBC_groups == 1:
B_shape = [batch_size, dstate, seqlen]
else:
B_shape = [batch_size, varBC_groups, dstate, seqlen]
B = torch.randn(B_shape,
device=device,
dtype=wtype if not is_variable_B else itype)
B_ref = B.clone()
if not is_variable_C:
C_shape = [dim, dstate]
elif varBC_groups == 1:
C_shape = [batch_size, dstate, seqlen]
else:
C_shape = [batch_size, varBC_groups, dstate, seqlen]
C = torch.randn(C_shape,
device=device,
dtype=wtype if not is_variable_C else itype)
C_ref = C.clone()
D = torch.randn(dim, device=device, dtype=torch.float32) if has_D else None
D_ref = D.clone()
z = torch.randn(batch_size, dim, seqlen, device=device,
dtype=itype) if has_z else None
z_ref = z.clone() if has_z else None
delta_bias = (0.5 * torch.rand(dim, device=device, dtype=torch.float32)
) if has_delta_bias else None
u = torch.randn(batch_size, dim, seqlen, device=device, dtype=itype)
u_ref = u.clone()
delta = (0.5 *
torch.rand(batch_size, dim, seqlen, device=device, dtype=itype))
delta_ref = delta.clone()
state_shape = (batch_size, u.shape[1], int(A.shape[1]))
state = torch.randn(state_shape,
device=u.device,
dtype=itype,
requires_grad=False)
state_ref = state.clone()
out = None
out_ref = None
outs = []
for c in range(scan_chunks):
chunked_prompt_len = seqlen // scan_chunks
chunk_start = chunked_prompt_len * c
chunk_end = chunked_prompt_len * (c + 1)
if c == scan_chunks - 1:
chunk_end = seqlen
_B = B
if is_variable_B:
_B = B[..., chunk_start:chunk_end]
_C = C
if is_variable_B:
_C = C[..., chunk_start:chunk_end]
_z = z
if has_z:
assert z is not None
_z = z[..., chunk_start:chunk_end]
out = selective_scan_fn(
u[..., chunk_start:chunk_end],
state,
delta[..., chunk_start:chunk_end],
A,
_B,
_C,
D,
z=_z,
delta_bias=delta_bias,
delta_softplus=delta_softplus,
has_initial_state=torch.ones(batch_size,
device=u.device,
dtype=torch.bool) if c > 0 else None)
outs.append(out)
if len(outs) > 1:
out = torch.cat(outs, dim=-1)
out_ref, state_ref, *rest = selective_scan_ref(
u_ref,
delta_ref,
A_ref,
B_ref,
C_ref,
D_ref,
z=z_ref,
delta_bias=delta_bias,
delta_softplus=delta_softplus,
return_last_state=True)
assert out is not None and out_ref is not None
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
assert state is not None and state_ref is not None
assert torch.allclose(state, state_ref.to(itype), rtol=rtol, atol=atol)
selective_scan_opcheck_fn(u,
delta,
A,
B,
C,
D,
z,
delta_bias=delta_bias,
delta_softplus=delta_softplus,
ssm_states=state)
@pytest.mark.parametrize("itype",
[torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("has_z", [False, True])
@pytest.mark.parametrize("dstate", [16, 32, 64])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
def test_selective_state_update(dim, dstate, has_z, itype):
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (5e-3, 1e-2)
if itype == torch.bfloat16:
rtol, atol = 1e-2, 5e-2
if torch.version.hip:
atol *= 2
# set seed
current_platform.seed_everything(0)
batch_size = 1
state = torch.randn(batch_size, dim, dstate, dtype=itype, device=device)
x = torch.randn(batch_size, dim, device=device, dtype=itype)
dt = torch.randn(batch_size, dim, device=device, dtype=itype)
dt_bias = torch.rand(dim, device=device) - 4.0
A = -torch.rand(dim, dstate, device=device) - 1.0
B = torch.randn(batch_size, dstate, device=device)
C = torch.randn(batch_size, dstate, device=device)
D = torch.randn(dim, device=device)
z = torch.randn_like(x) if has_z else None
state_ref = state.detach().clone()
out = selective_state_update(state,
x,
dt,
A,
B,
C,
D=D,
z=z,
dt_bias=dt_bias,
dt_softplus=True)
out_ref = selective_state_update_ref(state_ref,
x,
dt,
A,
B,
C,
D=D,
z=z,
dt_bias=dt_bias,
dt_softplus=True)
assert torch.allclose(state, state_ref, rtol=rtol, atol=atol)
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize('wtype', [torch.float32])
@pytest.mark.parametrize('itype', [torch.float32])
@pytest.mark.parametrize('seqlen', [1, 128, 129, 256, 512, 1024, 2048, 4096])
@pytest.mark.parametrize("return_last_state", [True])
@pytest.mark.parametrize('has_delta_bias', [True])
@pytest.mark.parametrize('delta_softplus', [True])
@pytest.mark.parametrize('has_z', [True])
@pytest.mark.parametrize('has_D', [True])
@pytest.mark.parametrize("varBC_groups", [1, 2])
@pytest.mark.parametrize("is_variable_C", [True])
@pytest.mark.parametrize("is_variable_B", [True])
# tests correctness in case subset of the sequences are padded
@pytest.mark.parametrize("with_padding", [False, True])
def test_selective_scan_varlen(with_padding, is_variable_B, is_variable_C,
varBC_groups, has_D, has_z, has_delta_bias,
delta_softplus, return_last_state, seqlen,
itype, wtype):
if varBC_groups > 1 and (not is_variable_B or not is_variable_C):
pytest.skip() # This config is not applicable
device = 'cuda'
rtol, atol = (6e-4, 2e-3) if itype == torch.float32 else (3e-3, 5e-3)
if itype == torch.bfloat16:
rtol, atol = 3e-2, 5e-2
rtolw, atolw = (1e-3, 1e-3)
if has_z: # If we have z, the errors on the weights seem higher
rtolw = max(rtolw, rtol)
atolw = max(atolw, atol)
# set seed
torch.random.manual_seed(0)
seqlens = []
batch_size = 4
if seqlen < 10:
batch_size = 1
padding = 3 if with_padding else 0
padded_batch_size = batch_size + padding
if with_padding and seqlen < padded_batch_size:
pytest.skip()
nsplits = padded_batch_size - 1
eos_pos = torch.randperm(seqlen - 1)[:nsplits].sort().values
seqlens.append(
torch.diff(
torch.cat(
[torch.tensor([-1]), eos_pos,
torch.tensor([seqlen - 1])])).tolist())
assert sum(seqlens[-1]) == seqlen
assert all(s > 0 for s in seqlens[-1])
total_entries = batch_size * 10
cumsum = torch.cumsum(torch.tensor(seqlens[0]), dim=0).to(torch.int32)
cumsum = torch.concat([torch.tensor([0], dtype=torch.int32), cumsum],
dim=0).cuda()
dim = 4
dstate = 8
A = (-0.5 * torch.rand(dim, dstate, device=device, dtype=wtype))
A_ref = A.clone()
B_shape = [varBC_groups, dstate, seqlen]
B = torch.randn(B_shape,
device=device,
dtype=wtype if not is_variable_B else itype)
B_ref = B.clone()
C_shape = [varBC_groups, dstate, seqlen]
C = torch.randn(C_shape,
device=device,
dtype=wtype if not is_variable_C else itype)
C_ref = C.clone()
D = torch.randn(dim, device=device, dtype=torch.float32) if has_D else None
D_ref = D.clone()
z = torch.randn(dim, seqlen, device=device, dtype=itype)
z_ref = z.clone()
delta_bias = (0.5 * torch.rand(dim, device=device, dtype=torch.float32)
) if has_delta_bias else None
u = torch.randn(dim, seqlen, device=device, dtype=itype)
u_ref = u.clone()
delta = (0.5 * torch.rand(dim, seqlen, device=device, dtype=itype))
delta_ref = delta.clone()
out = None
out_ref = None
prev_state_shape = (total_entries, u.shape[0], int(A.shape[1]))
prev_state = torch.randn(prev_state_shape,
device=u.device,
dtype=itype,
requires_grad=False)
prev_state_ref = prev_state.clone()
state_indices = torch.randperm(total_entries,
dtype=torch.int32,
device=u.device)[:batch_size]
unused_states_bool = torch.ones(total_entries,
dtype=torch.bool,
device=device)
unused_states_bool[state_indices] = False
padded_state_indices = torch.concat([
state_indices,
torch.as_tensor(
[PAD_SLOT_ID] * padding, dtype=torch.int32, device=device),
],
dim=-1)
has_initial_state = torch.randint(0,
2, (cumsum.shape[0] - 1, ),
dtype=torch.bool,
device=u.device)
out = selective_scan_fn(u, prev_state, delta, A, B, C, D, z, delta_bias,
delta_softplus, cumsum, padded_state_indices,
has_initial_state)
outs_ref = []
splits = [
torch.split(var, seqlens[0], dim=-1)
for var in (u_ref, delta_ref, B_ref, C_ref, z_ref)
]
for i in range(len(seqlens[0])):
u_s, delta_s, B_s, C_s, z_s = (v[i].unsqueeze(0) for v in splits)
if padded_state_indices[i] == PAD_SLOT_ID:
continue
out_ref_s, _ = selective_scan_ref(
u_s,
delta_s,
A_ref,
B_s,
C_s,
D_ref,
z=z_s,
delta_bias=delta_bias,
delta_softplus=delta_softplus,
return_last_state=return_last_state,
prev_state=prev_state_ref[padded_state_indices[i]].unsqueeze(0)
if has_initial_state[i] else None,
final_state_out=prev_state_ref[padded_state_indices[i]].unsqueeze(
0))
outs_ref.append(out_ref_s)
out_ref = torch.cat(outs_ref, dim=-1)[0]
unpadded_out = out[:, :out_ref[0].shape[-1]]
print("Output diff max", (unpadded_out - out_ref).max())
print("Output diff mean", (unpadded_out - out_ref).mean())
print("Output state diff max", (prev_state - prev_state_ref).max())
print("Output state diff mean", (prev_state - prev_state_ref).mean())
assert torch.allclose(prev_state, prev_state_ref, rtol=rtol, atol=atol)
assert torch.allclose(unpadded_out, out_ref, rtol=rtol, atol=atol)
selective_scan_opcheck_fn(u, delta, A, B, C, D, z, delta_bias,
delta_softplus, cumsum, padded_state_indices,
has_initial_state, prev_state)
@pytest.mark.parametrize("itype",
[torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("has_z", [True])
@pytest.mark.parametrize("dstate", [16, 32, 64])
@pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
# tests correctness in case subset of the sequences are padded
@pytest.mark.parametrize("with_padding", [True, False])
def test_selective_state_update_with_batch_indices(with_padding, dim, dstate,
has_z, itype):
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (5e-3, 1e-2)
if itype == torch.bfloat16:
rtol, atol = 1e-1, 1e-1
if torch.version.hip:
atol *= 2
# set seed
torch.random.manual_seed(0)
batch_size = 3
padding = 5 if with_padding else 0
padded_batch_size = batch_size + padding
total_entries = 10 * batch_size
state = torch.randn(total_entries, dim, dstate, dtype=itype, device=device)
state_indices = torch.randperm(total_entries)[:batch_size].to(
dtype=torch.int32, device=device)
unused_states_bool = torch.ones(total_entries,
dtype=torch.bool,
device=device)
unused_states_bool[state_indices] = False
padded_state_indices = torch.concat([
state_indices,
torch.as_tensor(
[PAD_SLOT_ID] * padding, dtype=torch.int32, device=device)
],
dim=0)
x = torch.randn(padded_batch_size, dim, device=device, dtype=itype)
dt = torch.randn(padded_batch_size, dim, device=device, dtype=itype)
dt_bias = torch.rand(dim, device=device) - 4.0
A = -torch.rand(dim, dstate, device=device) - 1.0
B = torch.randn(padded_batch_size, dstate, device=device)
C = torch.randn(padded_batch_size, dstate, device=device)
D = torch.randn(dim, device=device)
z = torch.randn_like(x) if has_z else None
state_ref = state[state_indices, :].clone()
state_before = state.clone()
out = selective_state_update(state,
x,
dt,
A,
B,
C,
D=D,
z=z,
dt_bias=dt_bias,
dt_softplus=True,
state_batch_indices=padded_state_indices,
pad_slot_id=PAD_SLOT_ID)
out_ref = selective_state_update_ref(state_ref,
x[:batch_size],
dt[:batch_size],
A,
B[:batch_size],
C[:batch_size],
D=D,
z=z[:batch_size],
dt_bias=dt_bias,
dt_softplus=True)
print("Output diff max", (out[:batch_size] - out_ref).max())
print("Output diff mean", (out[:batch_size] - out_ref).mean())
print("Output state diff max", (state[state_indices, :] - state_ref).max())
print("Output state diff mean",
(state[state_indices, :] - state_ref).mean())
# test padded entries stay the same
if with_padding:
assert torch.equal(state_before[unused_states_bool],
state[unused_states_bool])
assert torch.equal(x[batch_size + 1:], x[batch_size + 1:])
assert torch.equal(dt[batch_size + 1:], dt[batch_size + 1:])
assert torch.equal(B[batch_size + 1:], B[batch_size + 1:])
assert torch.equal(C[batch_size + 1:], C[batch_size + 1:])
# test "real" entries
assert torch.allclose(state[state_indices, :],
state_ref,
rtol=rtol,
atol=atol)
assert torch.allclose(out[:batch_size], out_ref, rtol=rtol, atol=atol)
@pytest.mark.parametrize("itype",
[torch.float32, torch.float16, torch.bfloat16])
@pytest.mark.parametrize("has_z", [False, True])
@pytest.mark.parametrize("tie_hdim", [False, True])
@pytest.mark.parametrize("ngroups", [1, 2, 4])
@pytest.mark.parametrize("dstate", [16, 32, 64])
@pytest.mark.parametrize("dim", [2048, 4096])
def test_selective_state_update_with_heads_with_batch_indices(
dim, dstate, ngroups, has_z, tie_hdim, itype):
device = "cuda"
rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (5e-3, 3e-2)
if itype == torch.bfloat16:
rtol, atol = 1e-1, 1e-1
# set seed
torch.random.manual_seed(0)
batch_size = 3
headdim = 64
nheads = dim // headdim
total_entries = 10 * batch_size
state = torch.randn(total_entries,
nheads,
headdim,
dstate,
dtype=itype,
device=device)
state_indices = torch.randperm(total_entries)[:batch_size].to(
dtype=torch.int32, device=device)
x = torch.randn(batch_size, nheads, headdim, device=device, dtype=itype)
if not tie_hdim:
dt = torch.randn(batch_size,
nheads,
headdim,
device=device,
dtype=itype)
dt_bias = torch.rand(nheads, headdim, device=device) - 4.0
A = -torch.rand(nheads, headdim, dstate, device=device) - 1.0
D = torch.randn(nheads, headdim, device=device)
else:
dt = repeat(torch.randn(batch_size, nheads, device=device,
dtype=itype),
"b h -> b h p",
p=headdim)
dt_bias = repeat(torch.rand(nheads, device=device) - 4.0,
"h -> h p",
p=headdim)
A = repeat(-torch.rand(nheads, device=device) - 1.0,
"h -> h p n",
p=headdim,
n=dstate)
D = repeat(torch.randn(nheads, device=device), "h -> h p", p=headdim)
B = torch.randn(batch_size, ngroups, dstate, device=device)
C = torch.randn(batch_size, ngroups, dstate, device=device)
z = torch.randn_like(x) if has_z else None
state_ref = state[state_indices, :].detach().clone()
out = selective_state_update(state,
x,
dt,
A,
B,
C,
D=D,
z=z,
dt_bias=dt_bias,
dt_softplus=True,
state_batch_indices=state_indices,
pad_slot_id=PAD_SLOT_ID)
out_ref = selective_state_update_ref(state_ref,
x,
dt,
A,
B,
C,
D=D,
z=z,
dt_bias=dt_bias,
dt_softplus=True)
print(f"Output max diff: {(out - out_ref).abs().max().item()}")
print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
assert torch.allclose(state[state_indices, :],
state_ref,
rtol=rtol,
atol=atol)
assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)