2025-02-02 14:58:18 -05:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
2025-01-16 19:58:53 +08:00
|
|
|
"""
|
|
|
|
experimental support for tensor-parallel inference with torchrun,
|
|
|
|
see https://github.com/vllm-project/vllm/issues/11400 for
|
|
|
|
the motivation and use case for this example.
|
|
|
|
run the script with `torchrun --nproc-per-node=2 torchrun_example.py`,
|
|
|
|
the argument 2 should match the `tensor_parallel_size` below.
|
|
|
|
see `tests/distributed/test_torchrun_example.py` for the unit test.
|
|
|
|
"""
|
|
|
|
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
|
|
|
|
# Create prompts, the same across all ranks
|
|
|
|
prompts = [
|
|
|
|
"Hello, my name is",
|
|
|
|
"The president of the United States is",
|
|
|
|
"The capital of France is",
|
|
|
|
"The future of AI is",
|
|
|
|
]
|
|
|
|
|
|
|
|
# Create sampling parameters, the same across all ranks
|
|
|
|
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
|
|
|
|
|
|
|
# Use `distributed_executor_backend="external_launcher"` so that
|
|
|
|
# this llm engine/instance only creates one worker.
|
2025-04-03 12:25:01 +08:00
|
|
|
# it is important to set an explicit seed to make sure that
|
|
|
|
# all ranks have the same random seed, so that sampling can be
|
|
|
|
# deterministic across ranks.
|
2025-01-16 19:58:53 +08:00
|
|
|
llm = LLM(
|
|
|
|
model="facebook/opt-125m",
|
|
|
|
tensor_parallel_size=2,
|
|
|
|
distributed_executor_backend="external_launcher",
|
2025-04-03 12:25:01 +08:00
|
|
|
seed=0,
|
2025-01-16 19:58:53 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
|
|
|
|
|
|
# all ranks will have the same outputs
|
2025-04-08 18:42:32 +08:00
|
|
|
print("-" * 50)
|
2025-01-16 19:58:53 +08:00
|
|
|
for output in outputs:
|
|
|
|
prompt = output.prompt
|
|
|
|
generated_text = output.outputs[0].text
|
2025-04-08 18:42:32 +08:00
|
|
|
print(f"Prompt: {prompt!r}\n"
|
2025-01-16 19:58:53 +08:00
|
|
|
f"Generated text: {generated_text!r}")
|
2025-04-08 18:42:32 +08:00
|
|
|
print("-" * 50)
|
2025-01-16 19:58:53 +08:00
|
|
|
"""
|
|
|
|
Further tips:
|
|
|
|
|
|
|
|
1. to communicate control messages across all ranks, use the cpu group,
|
|
|
|
a PyTorch ProcessGroup with GLOO backend.
|
|
|
|
|
|
|
|
```python
|
|
|
|
from vllm.distributed.parallel_state import get_world_group
|
|
|
|
cpu_group = get_world_group().cpu_group
|
|
|
|
torch_rank = dist.get_rank(group=cpu_group)
|
|
|
|
if torch_rank == 0:
|
|
|
|
# do something for rank 0, e.g. saving the results to disk.
|
|
|
|
```
|
|
|
|
|
|
|
|
2. to communicate data across all ranks, use the model's device group,
|
|
|
|
a PyTorch ProcessGroup with NCCL backend.
|
|
|
|
```python
|
|
|
|
from vllm.distributed.parallel_state import get_world_group
|
|
|
|
device_group = get_world_group().device_group
|
|
|
|
```
|
|
|
|
|
|
|
|
3. to access the model directly in every rank, use the following code:
|
|
|
|
```python
|
|
|
|
llm.llm_engine.model_executor.driver_worker.worker.model_runner.model
|
|
|
|
```
|
|
|
|
"""
|