2025-02-02 14:58:18 -05:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
2025-04-10 07:32:42 +08:00
|
|
|
"""
|
|
|
|
This file demonstrates the example usage of guided decoding
|
|
|
|
to generate structured outputs using vLLM. It shows how to apply
|
|
|
|
different guided decoding techniques such as Choice, Regex, JSON schema,
|
|
|
|
and Grammar to produce structured and formatted results
|
|
|
|
based on specific prompts.
|
|
|
|
"""
|
2025-02-02 14:58:18 -05:00
|
|
|
|
2024-11-18 18:52:12 +01:00
|
|
|
from enum import Enum
|
|
|
|
|
|
|
|
from pydantic import BaseModel
|
|
|
|
|
|
|
|
from vllm import LLM, SamplingParams
|
|
|
|
from vllm.sampling_params import GuidedDecodingParams
|
|
|
|
|
|
|
|
# Guided decoding by Choice (list of possible options)
|
2025-04-10 07:32:42 +08:00
|
|
|
guided_decoding_params_choice = GuidedDecodingParams(
|
|
|
|
choice=["Positive", "Negative"])
|
|
|
|
sampling_params_choice = SamplingParams(
|
|
|
|
guided_decoding=guided_decoding_params_choice)
|
|
|
|
prompt_choice = "Classify this sentiment: vLLM is wonderful!"
|
2024-11-18 18:52:12 +01:00
|
|
|
|
|
|
|
# Guided decoding by Regex
|
2025-04-10 07:32:42 +08:00
|
|
|
guided_decoding_params_regex = GuidedDecodingParams(regex=r"\w+@\w+\.com\n")
|
|
|
|
sampling_params_regex = SamplingParams(
|
|
|
|
guided_decoding=guided_decoding_params_regex, stop=["\n"])
|
|
|
|
prompt_regex = (
|
|
|
|
"Generate an email address for Alan Turing, who works in Enigma."
|
|
|
|
"End in .com and new line. Example result:"
|
|
|
|
"alan.turing@enigma.com\n")
|
2024-11-18 18:52:12 +01:00
|
|
|
|
|
|
|
|
|
|
|
# Guided decoding by JSON using Pydantic schema
|
|
|
|
class CarType(str, Enum):
|
|
|
|
sedan = "sedan"
|
|
|
|
suv = "SUV"
|
|
|
|
truck = "Truck"
|
|
|
|
coupe = "Coupe"
|
|
|
|
|
|
|
|
|
|
|
|
class CarDescription(BaseModel):
|
|
|
|
brand: str
|
|
|
|
model: str
|
|
|
|
car_type: CarType
|
|
|
|
|
|
|
|
|
|
|
|
json_schema = CarDescription.model_json_schema()
|
2025-04-10 07:32:42 +08:00
|
|
|
guided_decoding_params_json = GuidedDecodingParams(json=json_schema)
|
|
|
|
sampling_params_json = SamplingParams(
|
|
|
|
guided_decoding=guided_decoding_params_json)
|
|
|
|
prompt_json = ("Generate a JSON with the brand, model and car_type of"
|
|
|
|
"the most iconic car from the 90's")
|
2024-11-18 18:52:12 +01:00
|
|
|
|
|
|
|
# Guided decoding by Grammar
|
|
|
|
simplified_sql_grammar = """
|
2025-04-08 18:34:09 -04:00
|
|
|
root ::= select_statement
|
|
|
|
select_statement ::= "SELECT " column " from " table " where " condition
|
|
|
|
column ::= "col_1 " | "col_2 "
|
|
|
|
table ::= "table_1 " | "table_2 "
|
|
|
|
condition ::= column "= " number
|
|
|
|
number ::= "1 " | "2 "
|
2024-11-18 18:52:12 +01:00
|
|
|
"""
|
2025-04-10 07:32:42 +08:00
|
|
|
guided_decoding_params_grammar = GuidedDecodingParams(
|
|
|
|
grammar=simplified_sql_grammar)
|
|
|
|
sampling_params_grammar = SamplingParams(
|
|
|
|
guided_decoding=guided_decoding_params_grammar)
|
|
|
|
prompt_grammar = ("Generate an SQL query to show the 'username' and 'email'"
|
|
|
|
"from the 'users' table.")
|
|
|
|
|
|
|
|
|
|
|
|
def format_output(title: str, output: str):
|
|
|
|
print(f"{'-' * 50}\n{title}: {output}\n{'-' * 50}")
|
|
|
|
|
|
|
|
|
|
|
|
def generate_output(prompt: str, sampling_params: SamplingParams, llm: LLM):
|
|
|
|
outputs = llm.generate(prompts=prompt, sampling_params=sampling_params)
|
|
|
|
return outputs[0].outputs[0].text
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
llm = LLM(model="Qwen/Qwen2.5-3B-Instruct", max_model_len=100)
|
|
|
|
|
|
|
|
choice_output = generate_output(prompt_choice, sampling_params_choice, llm)
|
|
|
|
format_output("Guided decoding by Choice", choice_output)
|
|
|
|
|
|
|
|
regex_output = generate_output(prompt_regex, sampling_params_regex, llm)
|
|
|
|
format_output("Guided decoding by Regex", regex_output)
|
|
|
|
|
|
|
|
json_output = generate_output(prompt_json, sampling_params_json, llm)
|
|
|
|
format_output("Guided decoding by JSON", json_output)
|
|
|
|
|
|
|
|
grammar_output = generate_output(prompt_grammar, sampling_params_grammar,
|
|
|
|
llm)
|
|
|
|
format_output("Guided decoding by Grammar", grammar_output)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|