- Implement the {class}`~vllm.model_executor.models.interfaces.SupportsMultiModal` interface.
```diff
+ from vllm.model_executor.models.interfaces import SupportsMultiModal
- class YourModelForImage2Seq(nn.Module):
+ class YourModelForImage2Seq(nn.Module, SupportsMultiModal):
```
```{note}
The model class does not have to be named {code}`*ForCausalLM`.
Check out [the HuggingFace Transformers documentation](https://huggingface.co/docs/transformers/model_doc/auto#multimodal) for some examples.
```
- If you haven't already done so, reserve a keyword parameter in {meth}`~torch.nn.Module.forward`
for each input tensor that corresponds to a multi-modal input, as shown in the following example:
```diff
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: List[torch.Tensor],
attn_metadata: AttentionMetadata,
+ pixel_values: torch.Tensor,
) -> SamplerOutput:
```
## 2. Register input mappers
For each modality type that the model accepts as input, decorate the model class with {meth}`MULTIMODAL_REGISTRY.register_input_mapper <vllm.multimodal.MultiModalRegistry.register_input_mapper>`.
This decorator accepts a function that maps multi-modal inputs to the keyword arguments you have previously defined in {meth}`~torch.nn.Module.forward`.
```diff
from vllm.model_executor.models.interfaces import SupportsMultiModal
During startup, dummy data is passed to the vLLM model to allocate memory. This only consists of text input by default, which may not be applicable to multi-modal models.
In such cases, you can define your own dummy data by registering a factory method via {meth}`INPUT_REGISTRY.register_dummy_data <vllm.inputs.registry.InputRegistry.register_dummy_data>`.
```diff
from vllm.inputs import INPUT_REGISTRY
from vllm.model_executor.models.interfaces import SupportsMultiModal
Sometimes, there is a need to process inputs at the {class}`~vllm.LLMEngine` level before they are passed to the model executor.
This is often due to the fact that unlike implementations in HuggingFace Transformers, the reshaping and/or expansion of multi-modal embeddings needs to take place outside model's {meth}`~torch.nn.Module.forward` call.
You can register input processors via {meth}`INPUT_REGISTRY.register_input_processor <vllm.inputs.registry.InputRegistry.register_input_processor>`.
```diff
from vllm.inputs import INPUT_REGISTRY
from vllm.model_executor.models.interfaces import SupportsMultiModal