vllm/tests/kernels/test_activation.py

102 lines
3.4 KiB
Python
Raw Normal View History

import random
2024-02-21 20:17:52 -08:00
from typing import Type
2023-09-06 08:57:38 +09:00
import pytest
2023-04-02 00:30:17 -07:00
import torch
2023-09-06 08:57:38 +09:00
from tests.kernels.utils import opcheck
from vllm.model_executor.layers.activation import (FastGELU, FatreluAndMul,
GeluAndMul, NewGELU,
QuickGELU, SiluAndMul)
from vllm.platforms import current_platform
2023-04-02 00:30:17 -07:00
from .allclose_default import get_default_atol, get_default_rtol
2023-09-06 08:57:38 +09:00
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing
D = [512, 13824] # Arbitrary values for testing
2023-09-06 08:57:38 +09:00
SEEDS = [0]
CUDA_DEVICES = [
f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]
2023-09-06 08:57:38 +09:00
2023-04-02 00:30:17 -07:00
@pytest.mark.parametrize("activation",
["silu", "gelu", "gelu_tanh", "fatrelu"])
2023-09-06 08:57:38 +09:00
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
2023-04-02 00:30:17 -07:00
@torch.inference_mode()
2024-02-21 20:17:52 -08:00
def test_act_and_mul(
activation: str,
2023-04-02 00:30:17 -07:00
num_tokens: int,
d: int,
dtype: torch.dtype,
2023-09-06 08:57:38 +09:00
seed: int,
device: str,
2023-04-02 00:30:17 -07:00
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, 2 * d, dtype=dtype)
if activation == "silu":
layer = SiluAndMul()
fn = torch.ops._C.silu_and_mul
elif activation == "gelu":
layer = GeluAndMul(approximate="none")
fn = torch.ops._C.gelu_and_mul
elif activation == "gelu_tanh":
layer = GeluAndMul(approximate="tanh")
fn = torch.ops._C.gelu_tanh_and_mul
elif activation == "fatrelu":
threshold = random.uniform(0, 1)
layer = FatreluAndMul(threshold)
fn = torch.ops._C.fatrelu_and_mul
out = layer(x)
ref_out = layer.forward_native(x)
# The SiLU, GELU and FatReLU implementations are equivalent to the native
# PyTorch implementations, so we can do exact comparison.
torch.testing.assert_close(out, ref_out, atol=0.0, rtol=0.0)
2023-04-02 00:30:17 -07:00
d = x.shape[-1] // 2
output_shape = (x.shape[:-1] + (d, ))
out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
if activation == "fatrelu":
opcheck(fn, (out, x, threshold))
else:
opcheck(fn, (out, x))
2023-04-02 00:30:17 -07:00
@pytest.mark.parametrize("activation", [(FastGELU, torch.ops._C.gelu_fast),
(NewGELU, torch.ops._C.gelu_new),
(QuickGELU, torch.ops._C.gelu_quick)])
2023-09-06 08:57:38 +09:00
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
2024-02-21 20:17:52 -08:00
def test_activation(
activation: Type[torch.nn.Module],
num_tokens: int,
d: int,
dtype: torch.dtype,
2023-09-06 08:57:38 +09:00
seed: int,
device: str,
) -> None:
current_platform.seed_everything(seed)
torch.set_default_device(device)
x = torch.randn(num_tokens, d, dtype=dtype)
layer = activation[0]()
fn = activation[1]
out = layer(x)
ref_out = layer.forward_native(x)
torch.testing.assert_close(out,
ref_out,
atol=get_default_atol(out),
rtol=get_default_rtol(out))
out = torch.empty_like(x)
opcheck(fn, (out, x))