266 lines
9.8 KiB
Python
266 lines
9.8 KiB
Python
![]() |
# Adapted from https://github.com/sgl-project/sglang/pull/2575
|
||
|
import itertools
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
|
||
|
from vllm.model_executor.layers.activation import SiluAndMul
|
||
|
from vllm.model_executor.layers.fused_moe import fused_moe
|
||
|
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
|
||
|
per_token_group_quant_fp8, w8a8_block_fp8_matmul)
|
||
|
from vllm.platforms import current_platform
|
||
|
|
||
|
if current_platform.get_device_capability() < (9, 0):
|
||
|
pytest.skip("FP8 Triton requires CUDA 9.0 or higher",
|
||
|
allow_module_level=True)
|
||
|
|
||
|
# Test configurations
|
||
|
DTYPES = [torch.bfloat16] # [torch.half, torch.bfloat16, torch.float32]
|
||
|
NUM_TOKENS = [7, 83, 2048]
|
||
|
D = [512, 4096, 5120, 13824]
|
||
|
GROUP_SIZE = [64, 128, 256, 512]
|
||
|
M = [1, 7, 83, 512, 2048]
|
||
|
N = [128, 512, 1024, 4096, 7748, 13824]
|
||
|
K = [256, 4096, 5120, 3884, 13824]
|
||
|
# Deepseek-V3's intermediate size 18432, so N is 18432*2/8=4608 at TP8
|
||
|
# and its hidden size is 7168.
|
||
|
M_moe = [1, 7, 83, 512, 2048]
|
||
|
N_moe = [4608] # [128, 4608, 13824]
|
||
|
K_moe = [7168] # [256, 7168, 13824]
|
||
|
BLOCK_SIZE = [[128, 128]]
|
||
|
E = [256] # [8, 24, 128, 256]
|
||
|
TOP_KS = [1] # [1, 2, 6]
|
||
|
OUT_DTYPES = [torch.bfloat16] # [torch.float32, torch.half, torch.bfloat16]
|
||
|
SEEDS = [0]
|
||
|
|
||
|
|
||
|
def native_per_token_group_quant_fp8(x,
|
||
|
group_size,
|
||
|
eps=1e-10,
|
||
|
dtype=torch.float8_e4m3fn):
|
||
|
"""Function to perform per-token-group quantization on an input tensor
|
||
|
`x` using native torch."""
|
||
|
assert x.shape[-1] % group_size == 0, ("the last dimension of `x` cannot "
|
||
|
"be divisible by `group_size`")
|
||
|
assert x.is_contiguous(), "`x` is not contiguous"
|
||
|
|
||
|
finfo = torch.finfo(dtype)
|
||
|
fp8_min = finfo.min
|
||
|
fp8_max = finfo.max
|
||
|
|
||
|
x_ = x.reshape(x.numel() // group_size, group_size)
|
||
|
amax = x_.abs().max(dim=-1,
|
||
|
keepdim=True)[0].clamp(min=eps).to(torch.float32)
|
||
|
x_s = amax / fp8_max
|
||
|
x_q = (x_ / x_s).clamp(min=fp8_min, max=fp8_max).to(dtype)
|
||
|
x_q = x_q.reshape(x.shape)
|
||
|
x_s = x_s.reshape(x.shape[:-1] + (x.shape[-1] // group_size, ))
|
||
|
|
||
|
return x_q, x_s
|
||
|
|
||
|
|
||
|
def native_w8a8_block_fp8_matmul(A,
|
||
|
B,
|
||
|
As,
|
||
|
Bs,
|
||
|
block_size,
|
||
|
output_dtype=torch.float16):
|
||
|
"""Matrix multiplication with block-wise quantization using native torch."""
|
||
|
A = A.to(torch.float32)
|
||
|
B = B.to(torch.float32)
|
||
|
assert A.shape[-1] == B.shape[-1]
|
||
|
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
|
||
|
assert len(block_size) == 2
|
||
|
block_n, block_k = block_size[0], block_size[1]
|
||
|
assert (A.shape[-1] + block_k - 1) // block_k == As.shape[-1]
|
||
|
assert A.shape[:-1] == As.shape[:-1]
|
||
|
|
||
|
M = A.numel() // A.shape[-1]
|
||
|
N, K = B.shape
|
||
|
origin_C_shape = A.shape[:-1] + (N, )
|
||
|
A = A.reshape(M, A.shape[-1])
|
||
|
As = As.reshape(M, As.shape[-1])
|
||
|
n_tiles = (N + block_n - 1) // block_n
|
||
|
k_tiles = (K + block_k - 1) // block_k
|
||
|
assert n_tiles == Bs.shape[0]
|
||
|
assert k_tiles == Bs.shape[1]
|
||
|
|
||
|
C_shape = (M, N)
|
||
|
C = torch.zeros(C_shape, dtype=torch.float32, device=A.device)
|
||
|
|
||
|
A_tiles = [
|
||
|
A[:, i * block_k:min((i + 1) * block_k, K)] for i in range(k_tiles)
|
||
|
]
|
||
|
B_tiles = [[
|
||
|
B[j * block_n:min((j + 1) * block_n, N),
|
||
|
i * block_k:min((i + 1) * block_k, K), ] for i in range(k_tiles)
|
||
|
] for j in range(n_tiles)]
|
||
|
C_tiles = [
|
||
|
C[:, j * block_n:min((j + 1) * block_n, N)] for j in range(n_tiles)
|
||
|
]
|
||
|
As_tiles = [As[:, i:i + 1] for i in range(k_tiles)]
|
||
|
|
||
|
for i in range(k_tiles):
|
||
|
for j in range(n_tiles):
|
||
|
a = A_tiles[i]
|
||
|
b = B_tiles[j][i]
|
||
|
c = C_tiles[j]
|
||
|
s = As_tiles[i] * Bs[j][i]
|
||
|
c[:, :] += torch.matmul(a, b.t()) * s
|
||
|
|
||
|
C = C.reshape(origin_C_shape).to(output_dtype)
|
||
|
return C
|
||
|
|
||
|
|
||
|
def torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk, block_shape):
|
||
|
"""Fused moe with block-wise quantization using native torch."""
|
||
|
B, D = a.shape
|
||
|
a = a.view(B, -1, D).repeat(1, topk, 1).reshape(-1, D)
|
||
|
out = torch.zeros(B * topk, w2.shape[1], dtype=a.dtype, device=a.device)
|
||
|
score = torch.softmax(score, dim=-1, dtype=torch.float32)
|
||
|
topk_weight, topk_ids = torch.topk(score, topk)
|
||
|
topk_weight = topk_weight.view(-1)
|
||
|
topk_ids = topk_ids.view(-1)
|
||
|
|
||
|
_, block_k = block_shape[0], block_shape[1]
|
||
|
a_q, a_s = native_per_token_group_quant_fp8(a, block_k)
|
||
|
a_q = a_q.to(torch.float32)
|
||
|
for i in range(w1.shape[0]):
|
||
|
mask = topk_ids == i
|
||
|
if mask.sum():
|
||
|
inter_out = native_w8a8_block_fp8_matmul(a_q[mask],
|
||
|
w1[i],
|
||
|
a_s[mask],
|
||
|
w1_s[i],
|
||
|
block_shape,
|
||
|
output_dtype=a.dtype)
|
||
|
act_out = SiluAndMul().forward_native(inter_out)
|
||
|
act_out_q, act_out_s = native_per_token_group_quant_fp8(
|
||
|
act_out, block_k)
|
||
|
act_out = act_out.to(torch.float32)
|
||
|
out[mask] = native_w8a8_block_fp8_matmul(act_out_q,
|
||
|
w2[i],
|
||
|
act_out_s,
|
||
|
w2_s[i],
|
||
|
block_shape,
|
||
|
output_dtype=a.dtype)
|
||
|
return (out.view(B, -1, w2.shape[1]) *
|
||
|
topk_weight.view(B, -1, 1).to(out.dtype)).sum(dim=1)
|
||
|
|
||
|
|
||
|
# Skip all tests if CUDA is not available
|
||
|
pytest.importorskip("torch.cuda")
|
||
|
|
||
|
|
||
|
@pytest.fixture(autouse=True)
|
||
|
def setup_cuda():
|
||
|
torch.set_default_device("cuda")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("num_tokens,d,dtype,group_size,seed",
|
||
|
itertools.product(NUM_TOKENS, D, DTYPES, GROUP_SIZE,
|
||
|
SEEDS))
|
||
|
@torch.inference_mode()
|
||
|
def test_per_token_group_quant_fp8(num_tokens, d, dtype, group_size, seed):
|
||
|
torch.manual_seed(seed)
|
||
|
x = torch.rand(num_tokens, d, dtype=dtype)
|
||
|
|
||
|
ref_out, ref_scale = native_per_token_group_quant_fp8(x, group_size)
|
||
|
out, scale = per_token_group_quant_fp8(x, group_size)
|
||
|
|
||
|
assert torch.allclose(out.to(torch.float32),
|
||
|
ref_out.to(torch.float32),
|
||
|
rtol=0.15)
|
||
|
assert torch.allclose(scale, ref_scale)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("M,N,K,block_size,out_dtype,seed",
|
||
|
itertools.product(M, N, K, BLOCK_SIZE, OUT_DTYPES,
|
||
|
SEEDS))
|
||
|
@torch.inference_mode()
|
||
|
def test_w8a8_block_fp8_matmul(M, N, K, block_size, out_dtype, seed):
|
||
|
torch.manual_seed(seed)
|
||
|
factor_for_scale = 1e-2
|
||
|
fp8_info = torch.finfo(torch.float8_e4m3fn)
|
||
|
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
||
|
|
||
|
A_fp32 = (torch.rand(M, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
|
||
|
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||
|
|
||
|
B_fp32 = (torch.rand(N, K, dtype=torch.float32) - 0.5) * 2 * fp8_max
|
||
|
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||
|
|
||
|
block_n, block_k = block_size[0], block_size[1]
|
||
|
n_tiles = (N + block_n - 1) // block_n
|
||
|
k_tiles = (K + block_k - 1) // block_k
|
||
|
|
||
|
As = torch.rand(M, k_tiles, dtype=torch.float32) * factor_for_scale
|
||
|
Bs = torch.rand(n_tiles, k_tiles, dtype=torch.float32) * factor_for_scale
|
||
|
|
||
|
ref_out = native_w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size,
|
||
|
out_dtype)
|
||
|
out = w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, out_dtype)
|
||
|
|
||
|
rel_diff = (torch.mean(
|
||
|
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
|
||
|
torch.mean(torch.abs(ref_out.to(torch.float32))))
|
||
|
assert rel_diff < 0.001
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("M,N,K,E,topk,block_size,dtype,seed",
|
||
|
itertools.product(M_moe, N_moe, K_moe, E, TOP_KS,
|
||
|
BLOCK_SIZE, DTYPES, SEEDS))
|
||
|
@torch.inference_mode()
|
||
|
def test_w8a8_block_fp8_fused_moe(M, N, K, E, topk, block_size, dtype, seed):
|
||
|
torch.manual_seed(seed)
|
||
|
factor_for_scale = 1e-2
|
||
|
fp8_info = torch.finfo(torch.float8_e4m3fn)
|
||
|
fp8_max, fp8_min = fp8_info.max, fp8_info.min
|
||
|
|
||
|
a = torch.randn((M, K), dtype=dtype) / 10
|
||
|
|
||
|
w1_bf16 = (torch.rand(
|
||
|
(E, 2 * N, K), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
|
||
|
w1 = w1_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||
|
del w1_bf16
|
||
|
|
||
|
w2_bf16 = (torch.rand((E, K, N), dtype=torch.bfloat16) - 0.5) * 2 * fp8_max
|
||
|
w2 = w2_bf16.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
|
||
|
del w2_bf16
|
||
|
|
||
|
block_n, block_k = block_size[0], block_size[1]
|
||
|
n_tiles_w1 = (2 * N + block_n - 1) // block_n
|
||
|
n_tiles_w2 = (K + block_n - 1) // block_n
|
||
|
k_tiles_w1 = (K + block_k - 1) // block_k
|
||
|
k_tiles_w2 = (N + block_k - 1) // block_k
|
||
|
|
||
|
w1_s = torch.rand(
|
||
|
(E, n_tiles_w1, k_tiles_w1), dtype=torch.float32) * factor_for_scale
|
||
|
w2_s = torch.rand(
|
||
|
(E, n_tiles_w2, k_tiles_w2), dtype=torch.float32) * factor_for_scale
|
||
|
|
||
|
score = torch.randn((M, E), dtype=dtype)
|
||
|
|
||
|
out = fused_moe(
|
||
|
a,
|
||
|
w1,
|
||
|
w2,
|
||
|
score,
|
||
|
topk,
|
||
|
renormalize=False,
|
||
|
use_fp8_w8a8=True,
|
||
|
w1_scale=w1_s,
|
||
|
w2_scale=w2_s,
|
||
|
block_shape=block_size,
|
||
|
)
|
||
|
ref_out = torch_w8a8_block_fp8_moe(a, w1, w2, w1_s, w2_s, score, topk,
|
||
|
block_size)
|
||
|
|
||
|
print(f"{out.sum()=}")
|
||
|
print(f"{ref_out.sum()=}")
|
||
|
|
||
|
rel_diff = (torch.mean(
|
||
|
torch.abs(out.to(torch.float32) - ref_out.to(torch.float32))) /
|
||
|
torch.mean(torch.abs(ref_out.to(torch.float32))))
|
||
|
assert rel_diff < 0.03
|