vllm/tests/entrypoints/openai/test_tokenization.py

155 lines
5.2 KiB
Python
Raw Normal View History

import openai # use the official client for correctness check
import pytest
import pytest_asyncio
import requests
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
from .test_completion import zephyr_lora_added_tokens_files # noqa: F401
from .test_completion import zephyr_lora_files # noqa: F401
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
@pytest.fixture(scope="module")
def server(zephyr_lora_added_tokens_files: str): # noqa: F811
args = [
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--max-model-len",
"8192",
"--enforce-eager",
"--max-num-seqs",
"128",
# lora config
"--enable-lora",
"--lora-modules",
f"zephyr-lora2={zephyr_lora_added_tokens_files}",
"--max-lora-rank",
"64",
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.fixture(scope="module")
def tokenizer_name(model_name: str,
zephyr_lora_added_tokens_files: str): # noqa: F811
return zephyr_lora_added_tokens_files if (
model_name == "zephyr-lora2") else model_name
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name,tokenizer_name",
[(MODEL_NAME, MODEL_NAME), ("zephyr-lora2", "zephyr-lora2")],
indirect=["tokenizer_name"],
)
async def test_tokenize_completions(client: openai.AsyncOpenAI,
model_name: str, tokenizer_name: str):
base_url = str(client.base_url)[:-3].strip("/")
tokenizer = get_tokenizer(tokenizer_name=tokenizer_name,
tokenizer_mode="fast")
for add_special in [False, True]:
prompt = "vllm1 This is a test prompt."
tokens = tokenizer.encode(prompt, add_special_tokens=add_special)
response = requests.post(base_url + "/tokenize",
json={
"add_special_tokens": add_special,
"model": model_name,
"prompt": prompt
})
response.raise_for_status()
assert response.json() == {
"tokens": tokens,
"count": len(tokens),
"max_model_len": 8192
}
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name,tokenizer_name",
[(MODEL_NAME, MODEL_NAME), ("zephyr-lora2", "zephyr-lora2")],
indirect=["tokenizer_name"],
)
async def test_tokenize_chat(client: openai.AsyncOpenAI, model_name: str,
tokenizer_name: str):
base_url = str(client.base_url)[:-3].strip("/")
tokenizer = get_tokenizer(tokenizer_name=tokenizer_name,
tokenizer_mode="fast")
for add_generation in [False, True]:
for add_special in [False, True]:
conversation = [{
"role": "user",
"content": "Hi there!"
}, {
"role": "assistant",
"content": "Nice to meet you!"
}, {
"role": "user",
"content": "Can I ask a question? vllm1"
}]
prompt = tokenizer.apply_chat_template(
add_generation_prompt=add_generation,
conversation=conversation,
tokenize=False)
tokens = tokenizer.encode(prompt, add_special_tokens=add_special)
response = requests.post(base_url + "/tokenize",
json={
"add_generation_prompt":
add_generation,
"add_special_tokens": add_special,
"messages": conversation,
"model": model_name
})
response.raise_for_status()
assert response.json() == {
"tokens": tokens,
"count": len(tokens),
"max_model_len": 8192
}
@pytest.mark.asyncio
@pytest.mark.parametrize(
"model_name,tokenizer_name",
[(MODEL_NAME, MODEL_NAME), ("zephyr-lora2", "zephyr-lora2")],
indirect=["tokenizer_name"],
)
async def test_detokenize(client: openai.AsyncOpenAI, model_name: str,
tokenizer_name: str):
base_url = str(client.base_url)[:-3].strip("/")
tokenizer = get_tokenizer(tokenizer_name=tokenizer_name,
tokenizer_mode="fast")
prompt = "This is a test prompt. vllm1"
tokens = tokenizer.encode(prompt, add_special_tokens=False)
print(f"CALLING {base_url} FOR {model_name}")
response = requests.post(base_url + "/detokenize",
json={
"model": model_name,
"tokens": tokens
})
response.raise_for_status()
assert response.json() == {"prompt": prompt}