2025-02-02 14:58:18 -05:00
|
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
|
2024-01-30 16:34:10 -08:00
|
|
|
# Adapted from
|
|
|
|
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
|
|
|
|
# Copyright 2023 The vLLM team.
|
|
|
|
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
|
|
|
#
|
|
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
|
|
# and OPT implementations in this library. It has been modified from its
|
|
|
|
# original forms to accommodate minor architectural differences compared
|
|
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
"""Inference-only Mixtral model."""
|
2025-02-25 01:13:52 +00:00
|
|
|
from typing import Iterable, Optional, Set, Tuple, Union
|
2024-01-30 16:34:10 -08:00
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
from torch import nn
|
|
|
|
from transformers import MixtralConfig
|
|
|
|
|
2025-02-25 01:13:52 +00:00
|
|
|
from vllm.attention import Attention
|
2024-11-08 22:17:28 -08:00
|
|
|
from vllm.config import CacheConfig, VllmConfig
|
2024-10-03 19:56:58 -07:00
|
|
|
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
|
2024-04-10 15:33:30 -07:00
|
|
|
get_tensor_model_parallel_world_size,
|
|
|
|
tensor_model_parallel_all_reduce)
|
2024-01-30 16:34:10 -08:00
|
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
2024-04-26 13:41:14 -07:00
|
|
|
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
2024-03-25 23:59:47 +09:00
|
|
|
ReplicatedLinear,
|
2024-01-30 16:34:10 -08:00
|
|
|
RowParallelLinear)
|
2024-03-21 07:25:01 +08:00
|
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
2024-10-03 19:56:58 -07:00
|
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
2024-03-25 23:59:47 +09:00
|
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
2024-11-06 12:57:35 -07:00
|
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
2024-01-30 16:34:10 -08:00
|
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
2024-03-25 23:59:47 +09:00
|
|
|
ParallelLMHead, VocabParallelEmbedding)
|
2025-04-08 18:53:31 -07:00
|
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
|
|
default_weight_loader, maybe_remap_kv_scale_name)
|
2024-01-30 16:34:10 -08:00
|
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
2024-08-29 22:19:08 -04:00
|
|
|
from vllm.sequence import IntermediateTensors
|
2024-01-30 16:34:10 -08:00
|
|
|
|
2024-10-03 19:56:58 -07:00
|
|
|
from .interfaces import SupportsPP
|
|
|
|
from .utils import (is_pp_missing_parameter,
|
2024-11-10 22:41:46 -08:00
|
|
|
make_empty_intermediate_tensors_factory, make_layers,
|
|
|
|
maybe_prefix)
|
2024-10-03 19:56:58 -07:00
|
|
|
|
2024-01-30 16:34:10 -08:00
|
|
|
|
|
|
|
class MixtralMLP(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
num_experts: int,
|
|
|
|
hidden_size: int,
|
|
|
|
intermediate_size: int,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config: Optional[QuantizationConfig] = None,
|
2024-01-30 16:34:10 -08:00
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.num_experts = num_experts
|
|
|
|
self.ffn_dim = intermediate_size
|
|
|
|
self.hidden_dim = hidden_size
|
|
|
|
|
|
|
|
self.w1 = ReplicatedLinear(self.hidden_dim,
|
|
|
|
self.ffn_dim,
|
|
|
|
bias=False,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config=quant_config)
|
2024-01-30 16:34:10 -08:00
|
|
|
self.w2 = ReplicatedLinear(self.ffn_dim,
|
|
|
|
self.hidden_dim,
|
|
|
|
bias=False,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config=quant_config)
|
2024-01-30 16:34:10 -08:00
|
|
|
self.w3 = ReplicatedLinear(self.hidden_dim,
|
|
|
|
self.ffn_dim,
|
|
|
|
bias=False,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config=quant_config)
|
2024-01-30 16:34:10 -08:00
|
|
|
|
|
|
|
# TODO: Use vllm's SiluAndMul
|
|
|
|
self.act_fn = nn.SiLU()
|
|
|
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
|
|
w1_out, _ = self.w1(hidden_states)
|
|
|
|
w1_out = self.act_fn(w1_out)
|
|
|
|
w3_out, _ = self.w3(hidden_states)
|
|
|
|
current_hidden_states = w1_out * w3_out
|
|
|
|
current_hidden_states, _ = self.w2(current_hidden_states)
|
|
|
|
return current_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
class MixtralMoE(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
config: MixtralConfig,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config: Optional[QuantizationConfig] = None,
|
2024-01-30 16:34:10 -08:00
|
|
|
):
|
|
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
|
|
self.rank = get_tensor_model_parallel_rank()
|
|
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.num_total_experts = config.num_local_experts
|
|
|
|
self.top_k = config.num_experts_per_tok
|
|
|
|
if self.tp_size > self.num_total_experts:
|
|
|
|
raise ValueError(
|
|
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
|
|
f"the number of experts {self.num_total_experts}.")
|
|
|
|
# Split experts equally between ranks
|
|
|
|
self.expert_indicies = np.array_split(range(
|
|
|
|
self.num_total_experts), self.tp_size)[self.rank].tolist()
|
|
|
|
if not self.expert_indicies:
|
|
|
|
raise ValueError(
|
|
|
|
f"Rank {self.rank} has no experts assigned to it.")
|
|
|
|
|
|
|
|
self.experts = nn.ModuleList([
|
|
|
|
MixtralMLP(self.num_total_experts,
|
|
|
|
config.hidden_size,
|
|
|
|
config.intermediate_size,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config=quant_config)
|
2024-01-30 16:34:10 -08:00
|
|
|
if idx in self.expert_indicies else None
|
|
|
|
for idx in range(self.num_total_experts)
|
|
|
|
])
|
|
|
|
self.gate = ReplicatedLinear(config.hidden_size,
|
|
|
|
self.num_total_experts,
|
|
|
|
bias=False,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config=None)
|
2024-01-30 16:34:10 -08:00
|
|
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
2024-03-24 16:00:16 -07:00
|
|
|
num_tokens, hidden_dim = hidden_states.shape
|
2024-01-30 16:34:10 -08:00
|
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
2024-03-24 16:00:16 -07:00
|
|
|
# router_logits: (num_tokens, n_experts)
|
2024-01-30 16:34:10 -08:00
|
|
|
router_logits, _ = self.gate(hidden_states)
|
|
|
|
|
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
|
|
|
routing_weights, selected_experts = torch.topk(routing_weights,
|
|
|
|
self.top_k,
|
|
|
|
dim=-1)
|
|
|
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
|
|
|
|
|
|
|
final_hidden_states = None
|
|
|
|
for expert_idx in self.expert_indicies:
|
|
|
|
expert_layer = self.experts[expert_idx]
|
|
|
|
expert_mask = (selected_experts == expert_idx)
|
|
|
|
expert_weights = (routing_weights * expert_mask).sum(dim=-1,
|
|
|
|
keepdim=True)
|
|
|
|
|
|
|
|
current_hidden_states = expert_layer(hidden_states).mul_(
|
|
|
|
expert_weights)
|
|
|
|
if final_hidden_states is None:
|
|
|
|
final_hidden_states = current_hidden_states
|
|
|
|
else:
|
|
|
|
final_hidden_states.add_(current_hidden_states)
|
|
|
|
|
|
|
|
return tensor_model_parallel_all_reduce(final_hidden_states).view(
|
2024-03-24 16:00:16 -07:00
|
|
|
num_tokens, hidden_dim)
|
2024-01-30 16:34:10 -08:00
|
|
|
|
|
|
|
|
|
|
|
class MixtralAttention(nn.Module):
|
|
|
|
|
2024-05-13 10:47:25 -07:00
|
|
|
def __init__(
|
|
|
|
self,
|
2025-03-17 15:44:18 +01:00
|
|
|
config: MixtralConfig,
|
2024-05-13 10:47:25 -07:00
|
|
|
hidden_size: int,
|
|
|
|
num_heads: int,
|
|
|
|
num_kv_heads: int,
|
|
|
|
max_position: int = 4096 * 32,
|
|
|
|
rope_theta: float = 10000,
|
|
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
|
|
cache_config: Optional[CacheConfig] = None,
|
2024-11-22 14:04:42 -08:00
|
|
|
prefix: str = "",
|
2024-05-13 10:47:25 -07:00
|
|
|
) -> None:
|
2024-01-30 16:34:10 -08:00
|
|
|
super().__init__()
|
|
|
|
self.hidden_size = hidden_size
|
|
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
|
|
self.total_num_heads = num_heads
|
|
|
|
assert self.total_num_heads % tp_size == 0
|
|
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
|
|
self.total_num_kv_heads = num_kv_heads
|
|
|
|
if self.total_num_kv_heads >= tp_size:
|
|
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
|
|
else:
|
|
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
2025-03-17 15:44:18 +01:00
|
|
|
# MixtralConfig has an optional head_dim argument
|
|
|
|
self.head_dim = getattr(config, "head_dim",
|
|
|
|
self.hidden_size // self.total_num_heads)
|
2024-01-30 16:34:10 -08:00
|
|
|
self.q_size = self.num_heads * self.head_dim
|
|
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.rope_theta = rope_theta
|
|
|
|
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
|
|
hidden_size,
|
|
|
|
self.head_dim,
|
|
|
|
self.total_num_heads,
|
|
|
|
self.total_num_kv_heads,
|
|
|
|
bias=False,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config=quant_config,
|
2024-01-30 16:34:10 -08:00
|
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
|
|
self.total_num_heads * self.head_dim,
|
|
|
|
hidden_size,
|
|
|
|
bias=False,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config=quant_config,
|
2024-01-30 16:34:10 -08:00
|
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
|
|
self.head_dim,
|
|
|
|
rotary_dim=self.head_dim,
|
|
|
|
max_position=max_position,
|
|
|
|
base=int(self.rope_theta),
|
|
|
|
is_neox_style=True,
|
|
|
|
)
|
2024-05-22 13:28:20 -07:00
|
|
|
self.attn = Attention(self.num_heads,
|
|
|
|
self.head_dim,
|
|
|
|
self.scaling,
|
|
|
|
num_kv_heads=self.num_kv_heads,
|
|
|
|
cache_config=cache_config,
|
2024-11-22 14:04:42 -08:00
|
|
|
quant_config=quant_config,
|
|
|
|
prefix=f"{prefix}.attn")
|
2024-01-30 16:34:10 -08:00
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
positions: torch.Tensor,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
) -> torch.Tensor:
|
|
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
|
|
q, k = self.rotary_emb(positions, q, k)
|
2025-02-25 01:13:52 +00:00
|
|
|
attn_output = self.attn(q, k, v)
|
2024-01-30 16:34:10 -08:00
|
|
|
output, _ = self.o_proj(attn_output)
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
class MixtralDecoderLayer(nn.Module):
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
config: MixtralConfig,
|
2024-05-13 10:47:25 -07:00
|
|
|
cache_config: Optional[CacheConfig] = None,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config: Optional[QuantizationConfig] = None,
|
2024-11-22 14:04:42 -08:00
|
|
|
prefix: str = "",
|
2024-01-30 16:34:10 -08:00
|
|
|
) -> None:
|
|
|
|
super().__init__()
|
|
|
|
self.hidden_size = config.hidden_size
|
|
|
|
# Requires transformers > 4.32.0
|
|
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
|
|
self.self_attn = MixtralAttention(
|
2025-03-17 15:44:18 +01:00
|
|
|
config=config,
|
2024-01-30 16:34:10 -08:00
|
|
|
hidden_size=self.hidden_size,
|
|
|
|
num_heads=config.num_attention_heads,
|
|
|
|
max_position=config.max_position_embeddings,
|
|
|
|
num_kv_heads=config.num_key_value_heads,
|
|
|
|
rope_theta=rope_theta,
|
2024-05-13 10:47:25 -07:00
|
|
|
cache_config=cache_config,
|
2024-11-22 14:04:42 -08:00
|
|
|
quant_config=quant_config,
|
|
|
|
prefix=f"{prefix}.self_attn",
|
|
|
|
)
|
2024-01-30 16:34:10 -08:00
|
|
|
self.block_sparse_moe = MixtralMoE(config=config,
|
2024-04-26 13:41:14 -07:00
|
|
|
quant_config=quant_config)
|
2024-01-30 16:34:10 -08:00
|
|
|
self.input_layernorm = RMSNorm(config.hidden_size,
|
|
|
|
eps=config.rms_norm_eps)
|
|
|
|
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
|
|
|
eps=config.rms_norm_eps)
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
positions: torch.Tensor,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
residual: Optional[torch.Tensor],
|
|
|
|
) -> torch.Tensor:
|
|
|
|
# Self Attention
|
|
|
|
if residual is None:
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
else:
|
|
|
|
hidden_states, residual = self.input_layernorm(
|
|
|
|
hidden_states, residual)
|
|
|
|
hidden_states = self.self_attn(
|
|
|
|
positions=positions,
|
|
|
|
hidden_states=hidden_states,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Fully Connected
|
|
|
|
hidden_states, residual = self.post_attention_layernorm(
|
|
|
|
hidden_states, residual)
|
|
|
|
hidden_states = self.block_sparse_moe(hidden_states)
|
|
|
|
return hidden_states, residual
|
|
|
|
|
|
|
|
|
|
|
|
class MixtralModel(nn.Module):
|
|
|
|
|
2024-11-10 22:41:46 -08:00
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
2024-01-30 16:34:10 -08:00
|
|
|
super().__init__()
|
2024-11-10 22:41:46 -08:00
|
|
|
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
|
|
cache_config = vllm_config.cache_config
|
|
|
|
quant_config = vllm_config.quant_config
|
|
|
|
|
2024-01-30 16:34:10 -08:00
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
|
|
config.vocab_size,
|
|
|
|
config.hidden_size,
|
|
|
|
)
|
2024-10-03 19:56:58 -07:00
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
|
|
config.num_hidden_layers,
|
|
|
|
lambda prefix: MixtralDecoderLayer(
|
2024-11-22 14:04:42 -08:00
|
|
|
config, cache_config, quant_config=quant_config, prefix=prefix
|
|
|
|
),
|
2024-10-03 19:56:58 -07:00
|
|
|
prefix=f"{prefix}.layers")
|
2024-01-30 16:34:10 -08:00
|
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
2024-10-03 19:56:58 -07:00
|
|
|
self.make_empty_intermediate_tensors = (
|
|
|
|
make_empty_intermediate_tensors_factory(
|
|
|
|
["hidden_states", "residual"], config.hidden_size))
|
2024-01-30 16:34:10 -08:00
|
|
|
|
2024-11-16 21:18:46 -08:00
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
|
|
return self.embed_tokens(input_ids)
|
|
|
|
|
2024-01-30 16:34:10 -08:00
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: torch.Tensor,
|
|
|
|
positions: torch.Tensor,
|
2024-10-03 19:56:58 -07:00
|
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
2024-11-16 21:18:46 -08:00
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
2024-10-03 19:56:58 -07:00
|
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
|
|
if get_pp_group().is_first_rank:
|
2024-11-16 21:18:46 -08:00
|
|
|
if inputs_embeds is not None:
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
else:
|
|
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
2024-10-03 19:56:58 -07:00
|
|
|
residual = None
|
|
|
|
else:
|
|
|
|
assert intermediate_tensors is not None
|
|
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
|
|
residual = intermediate_tensors["residual"]
|
2025-02-25 01:13:52 +00:00
|
|
|
for layer in self.layers[self.start_layer:self.end_layer]:
|
|
|
|
hidden_states, residual = layer(positions, hidden_states, residual)
|
2024-10-03 19:56:58 -07:00
|
|
|
if not get_pp_group().is_last_rank:
|
|
|
|
return IntermediateTensors({
|
|
|
|
"hidden_states": hidden_states,
|
|
|
|
"residual": residual
|
|
|
|
})
|
2024-01-30 16:34:10 -08:00
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
2024-10-03 19:56:58 -07:00
|
|
|
class MixtralForCausalLM(nn.Module, SupportsPP):
|
2024-04-16 11:34:39 -07:00
|
|
|
fall_back_to_pt_during_load = False
|
2024-01-30 16:34:10 -08:00
|
|
|
|
2024-11-10 22:41:46 -08:00
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
2024-01-30 16:34:10 -08:00
|
|
|
super().__init__()
|
2024-11-08 22:17:28 -08:00
|
|
|
config = vllm_config.model_config.hf_config
|
|
|
|
quant_config = vllm_config.quant_config
|
2024-01-30 16:34:10 -08:00
|
|
|
self.config = config
|
2024-04-26 13:41:14 -07:00
|
|
|
self.quant_config = quant_config
|
2024-11-10 22:41:46 -08:00
|
|
|
self.model = MixtralModel(vllm_config=vllm_config,
|
|
|
|
prefix=maybe_prefix(prefix, "model"))
|
2024-07-03 06:25:17 +08:00
|
|
|
self.lm_head = ParallelLMHead(config.vocab_size,
|
|
|
|
config.hidden_size,
|
|
|
|
quant_config=quant_config)
|
2024-08-19 20:00:04 -07:00
|
|
|
if self.config.tie_word_embeddings:
|
|
|
|
self.lm_head.weight = self.model.embed_tokens.weight
|
2024-03-21 07:25:01 +08:00
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
2024-11-06 12:57:35 -07:00
|
|
|
self.sampler = get_sampler()
|
2024-10-03 19:56:58 -07:00
|
|
|
self.make_empty_intermediate_tensors = (
|
|
|
|
self.model.make_empty_intermediate_tensors)
|
2024-01-30 16:34:10 -08:00
|
|
|
|
2024-11-16 21:18:46 -08:00
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
|
|
return self.model.get_input_embeddings(input_ids)
|
|
|
|
|
2024-01-30 16:34:10 -08:00
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
input_ids: torch.Tensor,
|
|
|
|
positions: torch.Tensor,
|
2024-07-02 10:58:08 -07:00
|
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
2024-11-16 21:18:46 -08:00
|
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
2024-10-03 19:56:58 -07:00
|
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
2025-02-25 01:13:52 +00:00
|
|
|
hidden_states = self.model(input_ids, positions, intermediate_tensors,
|
2024-11-16 21:18:46 -08:00
|
|
|
inputs_embeds)
|
2024-01-30 16:34:10 -08:00
|
|
|
return hidden_states
|
|
|
|
|
2024-08-13 13:33:41 +08:00
|
|
|
def compute_logits(
|
|
|
|
self,
|
|
|
|
hidden_states: torch.Tensor,
|
|
|
|
sampling_metadata: SamplingMetadata,
|
|
|
|
) -> Optional[torch.Tensor]:
|
2024-07-03 06:25:17 +08:00
|
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
2024-03-21 07:25:01 +08:00
|
|
|
sampling_metadata)
|
|
|
|
return logits
|
|
|
|
|
2024-01-30 16:34:10 -08:00
|
|
|
def sample(
|
|
|
|
self,
|
2024-03-21 07:25:01 +08:00
|
|
|
logits: Optional[torch.Tensor],
|
2024-01-30 16:34:10 -08:00
|
|
|
sampling_metadata: SamplingMetadata,
|
|
|
|
) -> Optional[SamplerOutput]:
|
2024-03-21 07:25:01 +08:00
|
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
2024-01-30 16:34:10 -08:00
|
|
|
return next_tokens
|
|
|
|
|
2024-11-18 09:07:46 +08:00
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
|
|
torch.Tensor]]) -> Set[str]:
|
2024-01-30 16:34:10 -08:00
|
|
|
stacked_params_mapping = [
|
|
|
|
# (param_name, shard_name, shard_id)
|
|
|
|
("qkv_proj", "q_proj", "q"),
|
|
|
|
("qkv_proj", "k_proj", "k"),
|
|
|
|
("qkv_proj", "v_proj", "v"),
|
|
|
|
]
|
|
|
|
|
|
|
|
params_dict = dict(self.named_parameters())
|
2024-11-18 09:07:46 +08:00
|
|
|
loaded_params: Set[str] = set()
|
2024-04-16 11:34:39 -07:00
|
|
|
for name, loaded_weight in weights:
|
2024-01-30 16:34:10 -08:00
|
|
|
if "rotary_emb.inv_freq" in name:
|
|
|
|
continue
|
2025-04-08 18:53:31 -07:00
|
|
|
if name.endswith("scale"):
|
|
|
|
# Remapping the name of FP8 kv-scale.
|
|
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
|
|
if name is None:
|
|
|
|
continue
|
2024-01-30 16:34:10 -08:00
|
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
|
|
if weight_name not in name:
|
|
|
|
continue
|
|
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
# Skip loading extra bias for GPTQ models.
|
|
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
|
|
continue
|
2024-10-03 19:56:58 -07:00
|
|
|
if is_pp_missing_parameter(name, self):
|
|
|
|
continue
|
2024-01-30 16:34:10 -08:00
|
|
|
param = params_dict[name]
|
|
|
|
weight_loader = param.weight_loader
|
|
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
|
|
break
|
|
|
|
else:
|
|
|
|
# Skip loading extra bias for GPTQ models.
|
|
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
|
|
continue
|
|
|
|
# Skip experts that are not assigned to this worker.
|
|
|
|
if ("block_sparse_moe.experts." in name
|
|
|
|
and name not in params_dict):
|
|
|
|
continue
|
2024-10-03 19:56:58 -07:00
|
|
|
if is_pp_missing_parameter(name, self):
|
|
|
|
continue
|
2024-01-30 16:34:10 -08:00
|
|
|
param = params_dict[name]
|
|
|
|
weight_loader = getattr(param, "weight_loader",
|
|
|
|
default_weight_loader)
|
|
|
|
weight_loader(param, loaded_weight)
|
2024-11-18 09:07:46 +08:00
|
|
|
loaded_params.add(name)
|
|
|
|
return loaded_params
|