vllm/vllm/model_executor/models/mixtral_quant.py

458 lines
18 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
2024-01-30 16:34:10 -08:00
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only Mixtral model."""
from typing import Iterable, Optional, Set, Tuple, Union
2024-01-30 16:34:10 -08:00
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import MixtralConfig
from vllm.attention import Attention
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce)
2024-01-30 16:34:10 -08:00
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (QKVParallelLinear,
2024-03-25 23:59:47 +09:00
ReplicatedLinear,
2024-01-30 16:34:10 -08:00
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
2024-03-25 23:59:47 +09:00
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
2024-01-30 16:34:10 -08:00
from vllm.model_executor.layers.vocab_parallel_embedding import (
2024-03-25 23:59:47 +09:00
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
2024-01-30 16:34:10 -08:00
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
2024-01-30 16:34:10 -08:00
from .interfaces import SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)
2024-01-30 16:34:10 -08:00
class MixtralMLP(nn.Module):
def __init__(
self,
num_experts: int,
hidden_size: int,
intermediate_size: int,
quant_config: Optional[QuantizationConfig] = None,
2024-01-30 16:34:10 -08:00
) -> None:
super().__init__()
self.num_experts = num_experts
self.ffn_dim = intermediate_size
self.hidden_dim = hidden_size
self.w1 = ReplicatedLinear(self.hidden_dim,
self.ffn_dim,
bias=False,
quant_config=quant_config)
2024-01-30 16:34:10 -08:00
self.w2 = ReplicatedLinear(self.ffn_dim,
self.hidden_dim,
bias=False,
quant_config=quant_config)
2024-01-30 16:34:10 -08:00
self.w3 = ReplicatedLinear(self.hidden_dim,
self.ffn_dim,
bias=False,
quant_config=quant_config)
2024-01-30 16:34:10 -08:00
# TODO: Use vllm's SiluAndMul
self.act_fn = nn.SiLU()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
w1_out, _ = self.w1(hidden_states)
w1_out = self.act_fn(w1_out)
w3_out, _ = self.w3(hidden_states)
current_hidden_states = w1_out * w3_out
current_hidden_states, _ = self.w2(current_hidden_states)
return current_hidden_states
class MixtralMoE(nn.Module):
def __init__(
self,
config: MixtralConfig,
quant_config: Optional[QuantizationConfig] = None,
2024-01-30 16:34:10 -08:00
):
super().__init__()
self.config = config
self.rank = get_tensor_model_parallel_rank()
self.tp_size = get_tensor_model_parallel_world_size()
self.num_total_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
if self.tp_size > self.num_total_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {self.num_total_experts}.")
# Split experts equally between ranks
self.expert_indicies = np.array_split(range(
self.num_total_experts), self.tp_size)[self.rank].tolist()
if not self.expert_indicies:
raise ValueError(
f"Rank {self.rank} has no experts assigned to it.")
self.experts = nn.ModuleList([
MixtralMLP(self.num_total_experts,
config.hidden_size,
config.intermediate_size,
quant_config=quant_config)
2024-01-30 16:34:10 -08:00
if idx in self.expert_indicies else None
for idx in range(self.num_total_experts)
])
self.gate = ReplicatedLinear(config.hidden_size,
self.num_total_experts,
bias=False,
quant_config=None)
2024-01-30 16:34:10 -08:00
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_dim = hidden_states.shape
2024-01-30 16:34:10 -08:00
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (num_tokens, n_experts)
2024-01-30 16:34:10 -08:00
router_logits, _ = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights,
self.top_k,
dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
final_hidden_states = None
for expert_idx in self.expert_indicies:
expert_layer = self.experts[expert_idx]
expert_mask = (selected_experts == expert_idx)
expert_weights = (routing_weights * expert_mask).sum(dim=-1,
keepdim=True)
current_hidden_states = expert_layer(hidden_states).mul_(
expert_weights)
if final_hidden_states is None:
final_hidden_states = current_hidden_states
else:
final_hidden_states.add_(current_hidden_states)
return tensor_model_parallel_all_reduce(final_hidden_states).view(
num_tokens, hidden_dim)
2024-01-30 16:34:10 -08:00
class MixtralAttention(nn.Module):
def __init__(
self,
config: MixtralConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
quant_config: Optional[QuantizationConfig] = None,
cache_config: Optional[CacheConfig] = None,
prefix: str = "",
) -> None:
2024-01-30 16:34:10 -08:00
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
# MixtralConfig has an optional head_dim argument
self.head_dim = getattr(config, "head_dim",
self.hidden_size // self.total_num_heads)
2024-01-30 16:34:10 -08:00
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
2024-01-30 16:34:10 -08:00
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
2024-01-30 16:34:10 -08:00
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=int(self.rope_theta),
is_neox_style=True,
)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn")
2024-01-30 16:34:10 -08:00
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
2024-01-30 16:34:10 -08:00
output, _ = self.o_proj(attn_output)
return output
class MixtralDecoderLayer(nn.Module):
def __init__(
self,
config: MixtralConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
2024-01-30 16:34:10 -08:00
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 10000)
self.self_attn = MixtralAttention(
config=config,
2024-01-30 16:34:10 -08:00
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
2024-01-30 16:34:10 -08:00
self.block_sparse_moe = MixtralMoE(config=config,
quant_config=quant_config)
2024-01-30 16:34:10 -08:00
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.block_sparse_moe(hidden_states)
return hidden_states, residual
class MixtralModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
2024-01-30 16:34:10 -08:00
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
2024-01-30 16:34:10 -08:00
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: MixtralDecoderLayer(
config, cache_config, quant_config=quant_config, prefix=prefix
),
prefix=f"{prefix}.layers")
2024-01-30 16:34:10 -08:00
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
2024-01-30 16:34:10 -08:00
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
2024-01-30 16:34:10 -08:00
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors],
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in self.layers[self.start_layer:self.end_layer]:
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
2024-01-30 16:34:10 -08:00
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class MixtralForCausalLM(nn.Module, SupportsPP):
fall_back_to_pt_during_load = False
2024-01-30 16:34:10 -08:00
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
2024-01-30 16:34:10 -08:00
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
2024-01-30 16:34:10 -08:00
self.config = config
self.quant_config = quant_config
self.model = MixtralModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = get_sampler()
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
2024-01-30 16:34:10 -08:00
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
2024-01-30 16:34:10 -08:00
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, intermediate_tensors,
inputs_embeds)
2024-01-30 16:34:10 -08:00
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
2024-01-30 16:34:10 -08:00
def sample(
self,
logits: Optional[torch.Tensor],
2024-01-30 16:34:10 -08:00
sampling_metadata: SamplingMetadata,
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(logits, sampling_metadata)
2024-01-30 16:34:10 -08:00
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
2024-01-30 16:34:10 -08:00
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
2024-01-30 16:34:10 -08:00
if "rotary_emb.inv_freq" in name:
continue
if name.endswith("scale"):
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
2024-01-30 16:34:10 -08:00
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
2024-01-30 16:34:10 -08:00
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip experts that are not assigned to this worker.
if ("block_sparse_moe.experts." in name
and name not in params_dict):
continue
if is_pp_missing_parameter(name, self):
continue
2024-01-30 16:34:10 -08:00
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params