vllm/tests/models/decoder_only/language/test_big_models.py

65 lines
1.7 KiB
Python
Raw Normal View History

"""Compare the outputs of HF and vLLM when using greedy sampling.
This tests bigger models and use half precision.
Run `pytest tests/models/test_big_models.py`.
"""
import pytest
import torch
from ...utils import check_outputs_equal
MODELS = [
"meta-llama/Llama-2-7b-hf",
2024-05-09 00:44:35 +09:00
# "mistralai/Mistral-7B-v0.1", # Tested by test_mistral.py
# "Deci/DeciLM-7b", # Broken
# "tiiuae/falcon-7b", # Broken
"EleutherAI/gpt-j-6b",
2024-05-19 18:11:30 -07:00
# "mosaicml/mpt-7b", # Broken
# "Qwen/Qwen1.5-0.5B" # Broken,
]
#TODO: remove this after CPU float16 support ready
target_dtype = "float"
if torch.cuda.is_available():
target_dtype = "half"
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [32])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", [target_dtype])
def test_model_print(
vllm_runner,
model: str,
dtype: str,
) -> None:
with vllm_runner(model, dtype=dtype) as vllm_model:
# This test is for verifying whether the model's extra_repr
# can be printed correctly.
print(vllm_model.model.llm_engine.model_executor.driver_worker.
model_runner.model)