60 lines
1.8 KiB
Python
60 lines
1.8 KiB
Python
![]() |
"""Test the different finish_reason="stop" situations during generation:
|
||
|
1. One of the provided stop strings
|
||
|
2. One of the provided stop tokens
|
||
|
3. The EOS token
|
||
|
|
||
|
Run `pytest tests/samplers/test_stop_reason.py`.
|
||
|
"""
|
||
|
|
||
|
import pytest
|
||
|
import transformers
|
||
|
|
||
|
from vllm import SamplingParams
|
||
|
|
||
|
MODEL = "facebook/opt-350m"
|
||
|
STOP_STR = "."
|
||
|
SEED = 42
|
||
|
MAX_TOKENS = 1024
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def vllm_model(vllm_runner):
|
||
|
vllm_model = vllm_runner(MODEL)
|
||
|
yield vllm_model
|
||
|
del vllm_model
|
||
|
|
||
|
|
||
|
def test_stop_reason(vllm_model, example_prompts):
|
||
|
tokenizer = transformers.AutoTokenizer.from_pretrained(MODEL)
|
||
|
stop_token_id = tokenizer.convert_tokens_to_ids(STOP_STR)
|
||
|
llm = vllm_model.model
|
||
|
|
||
|
# test stop token
|
||
|
outputs = llm.generate(example_prompts,
|
||
|
sampling_params=SamplingParams(
|
||
|
seed=SEED,
|
||
|
max_tokens=MAX_TOKENS,
|
||
|
stop_token_ids=[stop_token_id]))
|
||
|
for output in outputs:
|
||
|
output = output.outputs[0]
|
||
|
assert output.finish_reason == "stop"
|
||
|
assert output.stop_reason == stop_token_id
|
||
|
|
||
|
# test stop string
|
||
|
outputs = llm.generate(example_prompts,
|
||
|
sampling_params=SamplingParams(
|
||
|
seed=SEED, max_tokens=MAX_TOKENS, stop="."))
|
||
|
for output in outputs:
|
||
|
output = output.outputs[0]
|
||
|
assert output.finish_reason == "stop"
|
||
|
assert output.stop_reason == STOP_STR
|
||
|
|
||
|
# test EOS token
|
||
|
outputs = llm.generate(example_prompts,
|
||
|
sampling_params=SamplingParams(
|
||
|
seed=SEED, max_tokens=MAX_TOKENS))
|
||
|
for output in outputs:
|
||
|
output = output.outputs[0]
|
||
|
assert output.finish_reason == "length" or (
|
||
|
output.finish_reason == "stop" and output.stop_reason is None)
|