vllm/cacheflow/worker/controller.py

78 lines
2.2 KiB
Python
Raw Normal View History

2023-02-23 09:32:19 +00:00
from typing import Dict, List, Union
from cacheflow.master.scheduler import Scheduler
from cacheflow.worker.worker import Worker
class Controller:
def __init__(
self,
node_id: int,
num_workers: int,
model_name: str,
block_size: int,
num_gpu_blocks: int,
num_cpu_blocks: int,
2023-02-23 21:31:39 +00:00
dtype: str = 'half',
2023-02-23 09:32:19 +00:00
) -> None:
self.node_id = node_id
self.num_workers = num_workers
self.model_name = model_name
self.block_size = block_size
self.num_gpu_blocks = num_gpu_blocks
self.num_cpu_blocks = num_cpu_blocks
# Which pipeline stage is this node assigned to?
self.is_first_stage = node_id == 0
self.is_last_stage = False
self.workers: List[Worker] = []
for i in range(num_workers):
worker = Worker(
worker_id=node_id + i,
gpu_id=i,
model_name=model_name,
block_size=block_size,
num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks,
2023-02-23 21:31:39 +00:00
dtype=dtype,
2023-02-23 09:32:19 +00:00
)
self.workers.append(worker)
def set_next(
self,
next_node: Union['Controller', 'Scheduler'],
) -> None:
self.next_node = next_node
self.is_last_stage = isinstance(next_node, Scheduler)
def execute_stage(
self,
prompt_tokens: Dict[int, List[int]],
generation_tokens: Dict[int, int],
context_lens: Dict[int, int],
block_tables: Dict[int, List[int]],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, int],
) -> None:
# FIXME: Support tensor parallelism.
assert len(self.workers) == 1
worker = self.workers[0]
output = worker.execute_stage(
prompt_tokens,
generation_tokens,
context_lens,
block_tables,
blocks_to_swap_in,
blocks_to_swap_out,
blocks_to_copy,
)
if self.is_last_stage:
self.next_node.post_step(output)
else:
# TODO: Support pipeline parallelism.
assert False