2024-07-22 23:50:48 -07:00
|
|
|
from typing import List, Optional, Type
|
|
|
|
|
|
|
|
import pytest
|
2024-08-21 15:49:39 -07:00
|
|
|
from transformers import AutoModelForVision2Seq, BatchEncoding
|
2024-07-22 23:50:48 -07:00
|
|
|
|
|
|
|
from vllm.multimodal.utils import rescale_image_size
|
2024-08-13 13:33:41 +08:00
|
|
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE
|
2024-07-22 23:50:48 -07:00
|
|
|
|
2024-08-13 13:33:41 +08:00
|
|
|
from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
|
|
|
|
from .utils import check_outputs_equal
|
2024-07-22 23:50:48 -07:00
|
|
|
|
|
|
|
pytestmark = pytest.mark.vlm
|
|
|
|
|
|
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
|
|
"stop_sign":
|
|
|
|
"USER: <image>\nWhat's the content of the image?\nASSISTANT:",
|
|
|
|
"cherry_blossom":
|
|
|
|
"USER: <image>\nWhat is the season?\nASSISTANT:",
|
|
|
|
})
|
|
|
|
|
|
|
|
models = ["facebook/chameleon-7b"]
|
|
|
|
|
|
|
|
|
|
|
|
def run_test(
|
2024-08-13 13:33:41 +08:00
|
|
|
hf_runner: Type[HfRunner],
|
2024-07-22 23:50:48 -07:00
|
|
|
vllm_runner: Type[VllmRunner],
|
|
|
|
image_assets: _ImageAssets,
|
|
|
|
model: str,
|
|
|
|
*,
|
|
|
|
size_factors: List[float],
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
2024-08-13 13:33:41 +08:00
|
|
|
num_logprobs: int,
|
2024-07-22 23:50:48 -07:00
|
|
|
tensor_parallel_size: int,
|
|
|
|
distributed_executor_backend: Optional[str] = None,
|
|
|
|
):
|
2024-08-13 13:33:41 +08:00
|
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
|
|
|
|
All the image fixtures for the test is under tests/images.
|
|
|
|
For huggingface runner, we provide the PIL images as input.
|
|
|
|
For vllm runner, we provide MultiModalDataDict objects
|
|
|
|
and corresponding vision language config as input.
|
|
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
|
|
The text output is sanitized to be able to compare with hf.
|
2024-07-22 23:50:48 -07:00
|
|
|
"""
|
2024-08-13 13:33:41 +08:00
|
|
|
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]
|
2024-07-22 23:50:48 -07:00
|
|
|
images = [asset.pil_image for asset in image_assets]
|
|
|
|
|
|
|
|
inputs_per_image = [(
|
|
|
|
[prompt for _ in size_factors],
|
|
|
|
[rescale_image_size(image, factor) for factor in size_factors],
|
|
|
|
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
|
|
|
|
|
|
|
with vllm_runner(model,
|
|
|
|
max_model_len=4096,
|
|
|
|
dtype=dtype,
|
|
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
|
|
distributed_executor_backend=distributed_executor_backend,
|
|
|
|
enforce_eager=True) as vllm_model:
|
|
|
|
|
2024-08-13 13:33:41 +08:00
|
|
|
vllm_outputs_per_image = [
|
|
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
|
|
max_tokens,
|
|
|
|
num_logprobs=num_logprobs,
|
|
|
|
images=images)
|
|
|
|
for prompts, images in inputs_per_image
|
|
|
|
]
|
|
|
|
|
|
|
|
def process(hf_inputs: BatchEncoding):
|
|
|
|
hf_inputs["pixel_values"] = hf_inputs["pixel_values"] \
|
|
|
|
.to(torch_dtype) # type: ignore
|
|
|
|
return hf_inputs
|
|
|
|
|
|
|
|
with hf_runner(model,
|
|
|
|
dtype=dtype,
|
|
|
|
postprocess_inputs=process,
|
2024-08-21 15:49:39 -07:00
|
|
|
auto_cls=AutoModelForVision2Seq) as hf_model:
|
2024-08-13 13:33:41 +08:00
|
|
|
hf_outputs_per_image = [
|
|
|
|
hf_model.generate_greedy_logprobs_limit(prompts,
|
|
|
|
max_tokens,
|
|
|
|
num_logprobs=num_logprobs,
|
|
|
|
images=images)
|
|
|
|
for prompts, images in inputs_per_image
|
|
|
|
]
|
|
|
|
|
|
|
|
for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
|
|
|
|
vllm_outputs_per_image):
|
|
|
|
# HF Logprobs include image tokens, unlike vLLM, so we don't directly
|
|
|
|
# compare them
|
|
|
|
check_outputs_equal(
|
|
|
|
outputs_0_lst=[outputs[:2] for outputs in hf_outputs],
|
|
|
|
outputs_1_lst=[outputs[:2] for outputs in vllm_outputs],
|
|
|
|
name_0="hf",
|
|
|
|
name_1="vllm",
|
|
|
|
)
|
2024-07-22 23:50:48 -07:00
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", models)
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"size_factors",
|
|
|
|
[
|
2024-08-13 13:33:41 +08:00
|
|
|
# No image
|
|
|
|
[],
|
2024-07-22 23:50:48 -07:00
|
|
|
# Single-scale
|
|
|
|
[1.0],
|
|
|
|
# Single-scale, batched
|
|
|
|
[1.0, 1.0, 1.0],
|
|
|
|
# Multi-scale
|
|
|
|
[0.25, 0.5, 1.0],
|
|
|
|
],
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("dtype", ["bfloat16"])
|
2024-08-13 13:33:41 +08:00
|
|
|
@pytest.mark.parametrize("max_tokens", [8])
|
|
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
|
|
def test_models(hf_runner, vllm_runner, image_assets, model, size_factors,
|
|
|
|
dtype, max_tokens, num_logprobs) -> None:
|
2024-07-22 23:50:48 -07:00
|
|
|
run_test(
|
2024-08-13 13:33:41 +08:00
|
|
|
hf_runner,
|
2024-07-22 23:50:48 -07:00
|
|
|
vllm_runner,
|
|
|
|
image_assets,
|
|
|
|
model,
|
|
|
|
size_factors=size_factors,
|
|
|
|
dtype=dtype,
|
|
|
|
max_tokens=max_tokens,
|
2024-08-13 13:33:41 +08:00
|
|
|
num_logprobs=num_logprobs,
|
2024-07-22 23:50:48 -07:00
|
|
|
tensor_parallel_size=1,
|
|
|
|
)
|