2024-03-25 14:16:30 -07:00
|
|
|
from vllm import LLM
|
2024-07-16 14:12:25 +08:00
|
|
|
from vllm.assets.image import ImageAsset
|
2024-03-25 14:16:30 -07:00
|
|
|
|
|
|
|
|
2024-07-02 00:57:09 -07:00
|
|
|
def run_llava():
|
2024-07-03 15:14:16 -07:00
|
|
|
llm = LLM(model="llava-hf/llava-1.5-7b-hf")
|
2024-03-25 14:16:30 -07:00
|
|
|
|
2024-07-03 11:34:00 +08:00
|
|
|
prompt = "USER: <image>\nWhat is the content of this image?\nASSISTANT:"
|
2024-03-25 14:16:30 -07:00
|
|
|
|
2024-07-16 14:12:25 +08:00
|
|
|
image = ImageAsset("stop_sign").pil_image
|
2024-05-29 04:29:31 +08:00
|
|
|
|
|
|
|
outputs = llm.generate({
|
2024-06-03 13:56:41 +08:00
|
|
|
"prompt": prompt,
|
2024-07-02 00:57:09 -07:00
|
|
|
"multi_modal_data": {
|
|
|
|
"image": image
|
|
|
|
},
|
2024-05-29 04:29:31 +08:00
|
|
|
})
|
2024-03-25 14:16:30 -07:00
|
|
|
|
|
|
|
for o in outputs:
|
|
|
|
generated_text = o.outputs[0].text
|
|
|
|
print(generated_text)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2024-07-16 14:12:25 +08:00
|
|
|
run_llava()
|