2024-07-25 11:59:30 +08:00
|
|
|
from collections import UserDict
|
|
|
|
from typing import List, Optional, Tuple, Type
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
import torch
|
|
|
|
import torch.types
|
|
|
|
from transformers import BatchFeature
|
|
|
|
|
|
|
|
from vllm.multimodal.utils import rescale_image_size
|
|
|
|
from vllm.sequence import SampleLogprobs
|
|
|
|
|
|
|
|
from ..conftest import IMAGE_ASSETS, HfRunner, VllmRunner, _ImageAssets
|
|
|
|
from .utils import check_logprobs_close
|
|
|
|
|
|
|
|
pytestmark = pytest.mark.vlm
|
|
|
|
|
|
|
|
# The image token is placed before "user" on purpose so that the test can pass
|
|
|
|
HF_IMAGE_PROMPTS = IMAGE_ASSETS.prompts({
|
|
|
|
"stop_sign":
|
|
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" \
|
|
|
|
"(<image>./</image>)\nWhat's the content of the image?<|eot_id|>" \
|
|
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n", # noqa: E501
|
|
|
|
"cherry_blossom":
|
|
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n" \
|
|
|
|
"(<image>./</image>)\nWhat is the season?<|eot_id|>" \
|
|
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
|
|
})
|
|
|
|
|
|
|
|
models = ["openbmb/MiniCPM-Llama3-V-2_5"]
|
|
|
|
|
|
|
|
|
|
|
|
def trunc_hf_output(hf_output: Tuple[List[int], str,
|
|
|
|
Optional[SampleLogprobs]]):
|
|
|
|
output_ids, output_str, out_logprobs = hf_output
|
|
|
|
if output_str.endswith("<|eot_id|>"):
|
|
|
|
output_str = output_str.split("<|eot_id|>")[0]
|
|
|
|
return output_ids, output_str, out_logprobs
|
|
|
|
|
|
|
|
|
|
|
|
target_dtype = "half"
|
|
|
|
|
|
|
|
|
|
|
|
def run_test(
|
|
|
|
hf_runner: Type[HfRunner],
|
|
|
|
vllm_runner: Type[VllmRunner],
|
|
|
|
image_assets: _ImageAssets,
|
|
|
|
model: str,
|
|
|
|
*,
|
|
|
|
size_factors: List[float],
|
|
|
|
dtype: str,
|
|
|
|
max_tokens: int,
|
|
|
|
num_logprobs: int,
|
|
|
|
tensor_parallel_size: int,
|
|
|
|
distributed_executor_backend: Optional[str] = None,
|
|
|
|
):
|
|
|
|
"""Inference result should be the same between hf and vllm.
|
|
|
|
|
|
|
|
All the image fixtures for the test is under tests/images.
|
|
|
|
For huggingface runner, we provide the PIL images as input.
|
|
|
|
For vllm runner, we provide MultiModalDataDict objects
|
|
|
|
and corresponding vision language config as input.
|
|
|
|
Note, the text input is also adjusted to abide by vllm contract.
|
|
|
|
The text output is sanitized to be able to compare with hf.
|
|
|
|
"""
|
|
|
|
images = [asset.pil_image for asset in image_assets]
|
|
|
|
|
|
|
|
inputs_per_image = [(
|
|
|
|
[prompt for _ in size_factors],
|
|
|
|
[rescale_image_size(image, factor) for factor in size_factors],
|
|
|
|
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]
|
|
|
|
|
|
|
|
# NOTE: take care of the order. run vLLM first, and then run HF.
|
|
|
|
# vLLM needs a fresh new process without cuda initialization.
|
|
|
|
# if we run HF first, the cuda initialization will be done and it
|
|
|
|
# will hurt multiprocessing backend with fork method (the default method).
|
|
|
|
|
|
|
|
# max_model_len should be greater than image_feature_size
|
|
|
|
with vllm_runner(model,
|
|
|
|
max_model_len=4096,
|
|
|
|
max_num_seqs=1,
|
|
|
|
dtype=dtype,
|
|
|
|
tensor_parallel_size=tensor_parallel_size,
|
|
|
|
distributed_executor_backend=distributed_executor_backend,
|
|
|
|
enforce_eager=True) as vllm_model:
|
|
|
|
tokenizer = vllm_model.model.get_tokenizer()
|
|
|
|
stop_token_ids = [tokenizer.eos_id, tokenizer.eot_id]
|
|
|
|
vllm_outputs_per_image = [
|
|
|
|
vllm_model.generate_greedy_logprobs(prompts,
|
|
|
|
max_tokens,
|
|
|
|
num_logprobs=num_logprobs,
|
2024-07-27 19:53:07 +08:00
|
|
|
images=images,
|
2024-07-25 11:59:30 +08:00
|
|
|
stop_token_ids=stop_token_ids)
|
2024-07-27 19:53:07 +08:00
|
|
|
for prompts, images in inputs_per_image
|
2024-07-25 11:59:30 +08:00
|
|
|
]
|
|
|
|
|
|
|
|
with hf_runner(model, dtype=dtype) as hf_model, torch.no_grad():
|
|
|
|
|
|
|
|
class NestedInputs(UserDict):
|
|
|
|
|
|
|
|
def __init__(self, model_inputs: BatchFeature):
|
|
|
|
super().__init__({"model_inputs": model_inputs})
|
|
|
|
|
|
|
|
self.model_inputs = model_inputs
|
|
|
|
|
|
|
|
def to(self, device: torch.types.Device):
|
|
|
|
return NestedInputs(self.model_inputs.to(device))
|
|
|
|
|
|
|
|
hf_processor = hf_model.processor
|
|
|
|
hf_model.processor = lambda **kw: NestedInputs(
|
|
|
|
hf_processor(**kw) # type: ignore
|
|
|
|
)
|
|
|
|
|
|
|
|
hf_outputs_per_image = [
|
|
|
|
hf_model.generate_greedy_logprobs_limit(prompts,
|
|
|
|
max_tokens,
|
|
|
|
num_logprobs=num_logprobs,
|
2024-07-27 19:53:07 +08:00
|
|
|
images=images,
|
2024-07-25 11:59:30 +08:00
|
|
|
tokenizer=tokenizer)
|
2024-07-27 19:53:07 +08:00
|
|
|
for prompts, images in inputs_per_image
|
2024-07-25 11:59:30 +08:00
|
|
|
]
|
|
|
|
|
|
|
|
for hf_outputs, vllm_outputs in zip(hf_outputs_per_image,
|
|
|
|
vllm_outputs_per_image):
|
|
|
|
check_logprobs_close(
|
|
|
|
outputs_0_lst=[
|
|
|
|
trunc_hf_output(hf_output) for hf_output in hf_outputs
|
|
|
|
],
|
|
|
|
outputs_1_lst=vllm_outputs,
|
|
|
|
name_0="hf",
|
|
|
|
name_1="vllm",
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("model", models)
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"size_factors",
|
|
|
|
[
|
|
|
|
# No image
|
|
|
|
[],
|
|
|
|
# Single-scale
|
|
|
|
[1.0],
|
|
|
|
# Single-scale, batched
|
|
|
|
[1.0, 1.0, 1.0],
|
|
|
|
# Multi-scale
|
|
|
|
[0.25, 0.5, 1.0],
|
|
|
|
],
|
|
|
|
)
|
|
|
|
@pytest.mark.parametrize("dtype", [target_dtype])
|
|
|
|
@pytest.mark.parametrize("max_tokens", [128])
|
|
|
|
@pytest.mark.parametrize("num_logprobs", [5])
|
|
|
|
def test_models(hf_runner, vllm_runner, image_assets, model, size_factors,
|
|
|
|
dtype: str, max_tokens: int, num_logprobs: int) -> None:
|
|
|
|
run_test(
|
|
|
|
hf_runner,
|
|
|
|
vllm_runner,
|
|
|
|
image_assets,
|
|
|
|
model,
|
|
|
|
size_factors=size_factors,
|
|
|
|
dtype=dtype,
|
|
|
|
max_tokens=max_tokens,
|
|
|
|
num_logprobs=num_logprobs,
|
|
|
|
tensor_parallel_size=1,
|
|
|
|
)
|