First, build a docker image from `Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ and launch a docker container from the image.
`Dockerfile.rocm <https://github.com/vllm-project/vllm/blob/main/Dockerfile.rocm>`_ uses ROCm 6.1 by default, but also supports ROCm 5.7 and 6.0 in older vLLM branches.
*`BUILD_FA`: specifies whether to build CK flash-attention. The default is 1. For `Radeon RX 7900 series (gfx1100) <https://rocm.docs.amd.com/projects/radeon/en/latest/index.html>`_, this should be set to 0 before flash-attention supports this target.
*`FX_GFX_ARCHS`: specifies the GFX architecture that is used to build CK flash-attention, for example, `gfx90a;gfx942` for MI200 and MI300. The default is `gfx90a;gfx942`
*`FA_BRANCH`: specifies the branch used to build the CK flash-attention in `ROCm's flash-attention repo <https://github.com/ROCmSoftwarePlatform/flash-attention>`_. The default is `ae7928c`
*`BUILD_TRITON`: specifies whether to build triton flash-attention. The default value is 1.
For installing PyTorch, you can start from a fresh docker image, e.g, `rocm/pytorch:rocm6.1.2_ubuntu20.04_py3.9_pytorch_staging`, `rocm/pytorch-nightly`.
Alternatively, you can install PyTorch using PyTorch wheels. You can check PyTorch installation guide in PyTorch `Getting Started <https://pytorch.org/get-started/locally/>`_
1. Install `Triton flash attention for ROCm <https://github.com/ROCm/triton>`_
Install ROCm's Triton flash attention (the default triton-mlir branch) following the instructions from `ROCm/triton <https://github.com/ROCm/triton/blob/triton-mlir/README.md>`_
2. Optionally, if you choose to use CK flash attention, you can install `flash attention for ROCm <https://github.com/ROCm/flash-attention/tree/ck_tile>`_
Install ROCm's flash attention (v2.5.9.post1) following the instructions from `ROCm/flash-attention <https://github.com/ROCm/flash-attention/tree/ck_tile#amd-gpurocm-support>`_
Alternatively, wheels intended for vLLM use can be accessed under the releases.
- Triton flash attention does not currently support sliding window attention. If using half precision, please use CK flash-attention for sliding window support.
- To use CK flash-attention or PyTorch naive attention, please use this flag ``export VLLM_USE_TRITON_FLASH_ATTN=0`` to turn off triton flash attention.
- The ROCm version of PyTorch, ideally, should match the ROCm driver version.
- For MI300x (gfx942) users, to achieve optimal performance, please refer to `MI300x tuning guide <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/index.html>`_ for performance optimization and tuning tips on system and workflow level.
For vLLM, please refer to `vLLM performance optimization <https://rocm.docs.amd.com/en/latest/how-to/tuning-guides/mi300x/workload.html#vllm-performance-optimization>`_.