vllm/tests/entrypoints/openai/test_pooling.py

241 lines
7.4 KiB
Python
Raw Normal View History

# SPDX-License-Identifier: Apache-2.0
import base64
import numpy as np
import pytest
import requests
from vllm.entrypoints.openai.protocol import PoolingResponse
from vllm.transformers_utils.tokenizer import get_tokenizer
from ...utils import RemoteOpenAIServer
MODEL_NAME = "jason9693/Qwen2.5-1.5B-apeach"
DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' + message['content'] + '\\n'}}{% endfor %}""" # noqa: E501
@pytest.fixture(scope="module")
def server():
args = [
"--task",
"classify",
# use half precision for speed and memory savings in CI environment
"--dtype",
"bfloat16",
"--enforce-eager",
"--max-model-len",
"8192",
"--chat-template",
DUMMY_CHAT_TEMPLATE,
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_single_pooling(server: RemoteOpenAIServer, model_name: str):
input_texts = [
"The chef prepared a delicious meal.",
]
# test single pooling
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_texts,
"encoding_format": "float"
},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 2
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 7
assert poolings.usage.total_tokens == 7
# test using token IDs
input_tokens = [1, 1, 1, 1, 1]
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_tokens,
"encoding_format": "float"
},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 1
assert len(poolings.data[0].data) == 2
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 5
assert poolings.usage.total_tokens == 5
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_pooling(server: RemoteOpenAIServer, model_name: str):
# test list[str]
input_texts = [
"The cat sat on the mat.", "A feline was resting on a rug.",
"Stars twinkle brightly in the night sky."
]
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_texts,
"encoding_format": "float"
},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 3
assert len(poolings.data[0].data) == 2
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 25
assert poolings.usage.total_tokens == 25
# test list[list[int]]
input_tokens = [[4, 5, 7, 9, 20], [15, 29, 499], [24, 24, 24, 24, 24],
[25, 32, 64, 77]]
response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": input_tokens,
"encoding_format": "float"
},
)
response.raise_for_status()
poolings = PoolingResponse.model_validate(response.json())
assert poolings.id is not None
assert len(poolings.data) == 4
assert len(poolings.data[0].data) == 2
assert poolings.usage.completion_tokens == 0
assert poolings.usage.prompt_tokens == 17
assert poolings.usage.total_tokens == 17
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_conversation_pooling(server: RemoteOpenAIServer,
model_name: str):
messages = [{
"role": "user",
"content": "The cat sat on the mat.",
}, {
"role": "assistant",
"content": "A feline was resting on a rug.",
}, {
"role": "user",
"content": "Stars twinkle brightly in the night sky.",
}]
chat_response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"messages": messages,
"encoding_format": "float",
},
)
chat_response.raise_for_status()
chat_poolings = PoolingResponse.model_validate(chat_response.json())
tokenizer = get_tokenizer(tokenizer_name=model_name, tokenizer_mode="fast")
prompt = tokenizer.apply_chat_template(
messages,
chat_template=DUMMY_CHAT_TEMPLATE,
add_generation_prompt=True,
continue_final_message=False,
tokenize=False,
)
completions_response = requests.post(
server.url_for("pooling"),
json={
"model": model_name,
"input": prompt,
"encoding_format": "float",
# To be consistent with chat
"add_special_tokens": False,
},
)
completions_response.raise_for_status()
completion_poolings = PoolingResponse.model_validate(
completions_response.json())
assert chat_poolings.id is not None
assert completion_poolings.id is not None
assert chat_poolings.created <= completion_poolings.created
assert chat_poolings.model_dump(
exclude={"id", "created"}) == (completion_poolings.model_dump(
exclude={"id", "created"}))
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_batch_base64_pooling(server: RemoteOpenAIServer,
model_name: str):
input_texts = [
"Hello my name is",
"The best thing about vLLM is that it supports many different models"
]
float_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
"encoding_format": "float",
},
)
float_response.raise_for_status()
responses_float = PoolingResponse.model_validate(float_response.json())
base64_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
"encoding_format": "base64",
},
)
base64_response.raise_for_status()
responses_base64 = PoolingResponse.model_validate(base64_response.json())
decoded_responses_base64_data = []
for data in responses_base64.data:
decoded_responses_base64_data.append(
np.frombuffer(base64.b64decode(data.data),
dtype="float32").tolist())
assert responses_float.data[0].data == decoded_responses_base64_data[0]
assert responses_float.data[1].data == decoded_responses_base64_data[1]
# Default response is float32 decoded from base64 by OpenAI Client
default_response = requests.post(
server.url_for("pooling"),
json={
"input": input_texts,
"model": model_name,
},
)
default_response.raise_for_status()
responses_default = PoolingResponse.model_validate(default_response.json())
assert responses_float.data[0].data == responses_default.data[0].data
assert responses_float.data[1].data == responses_default.data[1].data