vllm/cacheflow/models/attention.py

128 lines
5.2 KiB
Python
Raw Normal View History

from typing import List, Optional
2023-02-23 09:31:55 +00:00
import torch
import torch.nn as nn
from cacheflow import attention_ops
from cacheflow import cache_ops
2023-02-23 09:31:55 +00:00
from cacheflow.models import InputMetadata
class OPTCacheFlowAttention(nn.Module):
def __init__(self, scale: float) -> None:
super().__init__()
self.scale = float(scale)
2023-02-23 09:31:55 +00:00
2023-02-24 08:36:16 +00:00
def _masked_attention(
self,
query: torch.Tensor, # [num_queries, num_heads, head_size]
key: torch.Tensor, # [num_keys, num_heads, head_size]
value: torch.Tensor, # [num_keys, num_heads, head_size]
attn_mask: Optional[torch.Tensor] = None, # [num_queries, num_keys]
) -> torch.Tensor: # [num_queries, num_heads, head_size]
query = query * self.scale
attn = torch.einsum('qhd,khd->hqk', query, key)
if attn_mask is not None:
attn = attn + attn_mask
attn = torch.softmax(attn, dim=-1)
out = torch.einsum('hqk,khd->qhd', attn, value)
return out
2023-02-23 09:31:55 +00:00
def multi_query_kv_attention(
self,
output: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
query: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
key: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
value: torch.Tensor, # [num_prompt_tokens, num_heads, head_size]
prompt_lens: List[int],
2023-02-23 09:31:55 +00:00
) -> None:
# FIXME(woosuk): Replace the following with a custom op.
start_idx = 0
for prompt_len in prompt_lens:
out = output[start_idx:start_idx + prompt_len]
q = query[start_idx:start_idx + prompt_len]
k = key[start_idx:start_idx + prompt_len]
v = value[start_idx:start_idx + prompt_len]
attention_mask = torch.triu(
torch.ones(q.shape[0], k.shape[0]), diagonal=1) * -1e5
attention_mask = attention_mask.to(dtype=q.dtype, device=q.device)
attention_out = self._masked_attention(q, k, v, attention_mask)
out.copy_(attention_out, non_blocking=True)
start_idx += prompt_len
2023-02-23 09:31:55 +00:00
def single_query_cached_kv_attention(
self,
output: torch.Tensor, # [num_generation_tokens, num_heads, head_size]
query: torch.Tensor, # [num_generation_tokens, num_heads, head_size]
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
2023-02-23 09:31:55 +00:00
input_metadata: InputMetadata,
) -> None:
block_size = value_cache.shape[3]
attention_ops.single_query_cached_kv_attention(
output,
query,
key_cache,
value_cache,
self.scale,
input_metadata.block_tables,
input_metadata.context_lens,
block_size,
input_metadata.max_context_len,
)
2023-02-23 09:31:55 +00:00
def forward(
self,
query: torch.Tensor, # [num_tokens, num_heads * head_size]
key: torch.Tensor, # [num_tokens, num_heads * head_size]
value: torch.Tensor, # [num_tokens, num_heads * head_size]
key_cache: torch.Tensor, # [num_blocks, num_heads, head_size/x, block_size, x]
value_cache: torch.Tensor, # [num_blocks, num_heads, head_size, block_size]
2023-02-23 09:31:55 +00:00
input_metadata: InputMetadata,
cache_event: Optional[torch.cuda.Event],
) -> torch.Tensor: # [num_tokens, num_heads * head_size]
# Pre-allocate the output tensor.
output = torch.empty_like(query)
# Prune out paddings if any.
2023-02-23 23:02:25 +00:00
query = query[:input_metadata.num_valid_tokens]
key = key[:input_metadata.num_valid_tokens]
value = value[:input_metadata.num_valid_tokens]
2023-02-23 09:31:55 +00:00
# Reshape the input tensors.
num_heads = value_cache.shape[1]
head_size = value_cache.shape[2]
2023-02-23 09:31:55 +00:00
query = query.view(-1, num_heads, head_size)
key = key.view(-1, num_heads, head_size)
value = value.view(-1, num_heads, head_size)
output = output.view(-1, num_heads, head_size)
2023-02-23 09:31:55 +00:00
# Compute the attention op for prompts.
self.multi_query_kv_attention(
output, query, key, value, input_metadata.prompt_lens)
2023-02-23 09:31:55 +00:00
# Wait until the cache op is done.
if cache_event is not None:
cache_event.wait()
# Reshape the keys and values and store them in the cache.
cache_ops.reshape_and_cache(
2023-02-23 09:31:55 +00:00
key, value, key_cache, value_cache, input_metadata.slot_mapping)
if input_metadata.num_generation_tokens > 0:
# Compute the attention op for generation tokens.
start_idx = sum(input_metadata.prompt_lens)
2023-02-23 09:31:55 +00:00
self.single_query_cached_kv_attention(
output[start_idx:],
query[start_idx:],
key_cache,
value_cache,
input_metadata)
# Reshape the output tensor.
# NOTE(woosuk): The output tensor may include paddings.
2023-02-23 09:31:55 +00:00
return output.view(-1, num_heads * head_size)